Created
January 10, 2020 11:59
-
-
Save faiface/7ee938f34c6fdb3d353d7870d7e751e6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from fractions import Fraction | |
from copy import deepcopy | |
def places(): | |
for r in range(1, 8+1): | |
for c in range(1, 8+1): | |
yield (r, c) | |
def neighbors(b1, b2): | |
r1, c1 = b1 | |
r2, c2 = b2 | |
if (r1, c1) == (r2, c2): | |
return False | |
return abs(r1-r2) <= 1 and abs(c1-c2) <= 1 | |
def transitions(): | |
num_neighbors = {} | |
for b1 in places(): | |
num_neighbors[b1] = len(list(b2 for b2 in places() if neighbors(b1, b2))) | |
trans = {} | |
for b1 in places(): | |
for b2 in places(): | |
if neighbors(b1, b2): | |
trans[(b1,b2)] = Fraction(1, num_neighbors[b1]) | |
else: | |
trans[(b1,b2)] = Fraction(0) | |
return trans | |
def transition_matrix(trans): | |
P = [] | |
for b1 in places(): | |
row = [] | |
for b2 in places(): | |
row.append(trans[(b1,b2)]) | |
P.append(row) | |
return P | |
def verify_transition_matrix(P): | |
n = len(P) | |
for r in range(n): | |
row_sum = Fraction(0) | |
for c in range(n): | |
row_sum += P[r][c] | |
assert row_sum == 1, f'every row should sum to 1, but row {r} sums to {row_sum}' | |
def prepare_for_solving(P): | |
n = len(P) | |
# transpose | |
for r in range(n): | |
for c in range(r+1, n): | |
P[r][c], P[c][r] = P[c][r], P[r][c] | |
# subtract 1 from the diagonal | |
for r in range(n): | |
P[r][r] -= 1 | |
# add the results column (zeros) | |
for r in range(n): | |
P[r].append(0) | |
# add the sum-check row (sum of all the results must be 1) | |
P.append([1 for _ in range(n+1)]) | |
def gaussian_eliminate(P): | |
def swap_rows(r0, r1): | |
n = len(P) | |
for c in range(n): | |
P[r0][c], P[r1][c] = P[r1][c], P[r0][c] | |
def multiply_row(r, k): | |
n = len(P) | |
for c in range(n): | |
P[r][c] *= k | |
def add_row_multiple(r0, r1, k): | |
n = len(P) | |
for c in range(n): | |
P[r1][c] += P[r0][c] * k | |
n = len(P) | |
for r in range(n): | |
if P[r][r] == 0: | |
for r1 in range(r+1, n): | |
if P[r1][r] != 0: | |
swap_rows(r, r1) | |
break | |
else: | |
continue | |
multiply_row(r, 1/P[r][r]) | |
for r1 in range(n): | |
if r == r1: | |
continue | |
add_row_multiple(r, r1, -P[r1][r]) | |
def extract_result(P): | |
n = len(P)-1 | |
return [P[r][n] for r in range(n)] | |
def multiply(vec, P): | |
n = len(P) | |
res = [Fraction(0) for _ in range(n)] | |
for j in range(n): | |
for i in range(n): | |
res[j] += vec[i] * P[i][j] | |
return res | |
P = transition_matrix(transitions()) | |
verify_transition_matrix(P) | |
S = deepcopy(P) | |
prepare_for_solving(S) | |
gaussian_eliminate(S) | |
result = extract_result(S) | |
verify = multiply(result, P) | |
print('result:', ' '.join(map(str, result))) | |
print() | |
print('verify:', ' '.join(map(str, verify))) | |
print() | |
print('Stationary distribution visualization on the chess board:') | |
board = [[None for _ in range(8)] for _ in range(8)] | |
for (i, (r, c)) in enumerate(places()): | |
board[r-1][c-1] = format(str(result[i]), '>6') | |
for row in board: | |
print(' '.join(row)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment