Skip to content

Instantly share code, notes, and snippets.

@fangkuoyu
fangkuoyu / eval.csv
Last active December 15, 2024 10:10
evalulation
google/paligemma-3B-pt-224 google/paligemma-3B-mix-224 google/paligemma2-3B-pt-224
BERTScore (acc/avg) G-Eval (acc/avg) BERTScore (acc/avg) G-Eval (acc/avg) BERTScore (acc/avg) G-Eval (acc/avg)
VQA-RAD Train Data 200
VQA-RAD Test Data 200
@fangkuoyu
fangkuoyu / PaliGemma.csv
Last active December 10, 2024 02:23
PaliGemma
PaliGemma v1 PaliGemma v2
Model Size 3B 3B / 10B / 28B
Training Mode Pre-Trained(pt) / Fine-Tuned (mix) Pre-Trained(pt)
Image Resolution 224x224 / 448x448 / 896x896 224x224 / 448x448 / 896x896
Release Example paligemma-3b-pt-224 paligemma2-3b-pt-224
paligemma-3b-mix-224 paligemma2-28b-pt-896
Model Data Training Method Library Colab Local
Transformer PEFT TRL
TinyLLaMA Finetuning PEFT STFTrainer
LoRA SFTTrainer
QLoRA SFTTrainer T4 1660Ti
Alignment RLHF/PPO PPOTrainer
DPO DPOTrainer 1660Ti
GPT2 IMDB Aligment RLHF/PPO yes no PPOTrainer T4
We can make this file beautiful and searchable if this error is corrected: It looks like row 10 should actually have 10 columns, instead of 2 in line 9.
Environment, OpenAI Gym, D/C, Self-Driving, Q-Learning, DQN, DDPG, Policy Gradient, A2C/A3C, PPO
PyLessons - Pong, , , , , pong_dqn_tf2_001.py/222/-4.48, , pong_pg_tf2_001/300/-18 TBD, v, TBD
PyLessons - LunarLander, , , , , , , , , v
Jordi Torres, , , , , , , , ,
, , , , , , ,,,
CartPole, v, , , , , ,,,
Pendulum, v, C, , , , ,,,
LunarLander, v, D, v, , NG/TBD, ,,,
LunarLander, v, C, v, , , SKRL/500000/failed, ,,?
CarRacing,
Name Pole Taxi Atari/Pong Atari/Breakout
State Space of Variables 4 1 (210, 160, 3) (210, 160, 3)
Range of Variable float int (1-500) int int
Action 2 6 6 6
Reward
Goal up pick-drop return hit the brick
Model Q Learning v
Deep Q Learning v v v v
Comment 5 lines
Type Star Title Description Paper_URL Dataset_URL
(arxiv) (Kaggle/Zenodo)
Networking
WiFi Toward More Reliable Deep Learning-Based Link Adaptation for WiFi 6
SMART - Self-adaptive Machine Learning Approach for Real-time Tuning of IEEE 802.11 PHY and MAC layers https://zenodo.org/record/6394799#.Y3wtZ3ZBxPY
LoRa LoED: The LoRaWAN at the Edge Dataset https://zenodo.org/record/4121430#.Y3wzU3ZBxPY
* Environmental Impact on the Long-Term Connectivity and Link Quality of an Outdoor LoRa Network
NB-IoT Deep Learning Anomaly Detection for Cellular IoT With Applications in Smart Logistics https://arxiv.org/abs/2102.08936 https://zenodo.org/record/4686782#.Y3w2OHZBxPY
3G/4G/5G
* Anomaly detection in 4G cellular networks https://www.kaggle.com/competitions/anomaly-detection-in-4g-cellular-networks
File Description arguments outputs
1. train.py train the data defined in 'train' under pcb.yaml
2. test.py test the data defined in 'test' under pcb.yaml
3. detect.py detect an image
Class Labels P R [email protected] [email protected]:.95
all 470 0.965 0.859 0.937 0.461
Missing_hole 77 0.974 0.974 0.958 0.513
Mouse_bite 75 0.984 0.833 0.971 0.494
Open_circuit 80 0.953 0.754 0.899 0.393
Short 81 0.987 0.958 0.972 0.426
Spur 76 1 0.82 0.927 0.473
Spurious_copper 81 0.892 0.815 0.898 0.468
# train/valid/test directories
train: D:/pcb/dataset/train/
val: D:/pcb/dataset/valid/
test: D:/pcb/dataset/test/
# number of classes
nc: 6
# names of classes
names: ['Missing_hole', 'Mouse_bite', 'Open_circuit', 'Short', 'Spur', 'Spurious_copper']
ID Dataset Type Classes Total Per Class ImageNet Trainable Training Model Reg Aug Epoch Train Valid Comment
*1 Archietcture more 25 200+ - 600+ yes true true - - - 30 100 70+ fair
2 Archietcture2 more 9 900+ - 1700+ yes true true - - - 30 100 70+ fair
*3 _art/artist more 50 300+ yes true true - - - 30 100 70+ fair
*4 _art/artform more 5 700+ - 2000+ yes true true - - - 30 100 96.1 great
*5 _art/artmovement more 3 320 yes true true - - - 30 100 74.0 fair
50 100 87.5 good
*6 _house/furniture one 5 900+ - 1600+ yes true true - - - 30 100 100 gr