Created
February 13, 2019 01:05
-
-
Save ffwff/a063d99c1cf00e47411dea10f5ba77f3 to your computer and use it in GitHub Desktop.
extract hardsubs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pyocr | |
from PIL import Image | |
import cv2 | |
import srt #https://media.readthedocs.org/pdf/srt/latest/srt.pdf | |
from datetime import timedelta | |
import time | |
import unicodedata | |
import numpy as np | |
import multiprocessing as mp | |
import re | |
import sys | |
# file settings | |
FILE=sys.argv[1] | |
FILE_OUT=sys.argv[2] | |
print(FILE, FILE_OUT) | |
LANG = '' | |
TEXT_TOP = 560 | |
TEXT_BOTTOM = 720 | |
TEXT_LEFT = 0 | |
TEXT_RIGHT = 1280 | |
FR_SKIP = 3 | |
FR_DELTA = timedelta(seconds=1001/24000)*(FR_SKIP+1) # 24fps | |
NTHREADS = 13 | |
# comment below to not skip | |
SKIP_TO = timedelta(minutes=0,seconds=0) | |
# misc image processing options | |
START_REGION, END_REGION = (245,245,245), (255, 255, 255) | |
KERNEL = np.ones((3,3),np.uint8) | |
LEV_LIM = 7 | |
SYMBOL_LIMS = [' ', '.', '¿','?','-','!', ','] | |
WORD_FILTER = re.compile(r"^[ABCDFGHJKLMNPQRSTVXZabcdfghjklmnpqrstvxz]+$") | |
ABSDIFF_THRESH=0.5 | |
EMPTY_THRESH=0.1 | |
# runtime | |
n_time = timedelta() | |
subs = [] | |
tool = pyocr.get_available_tools()[0] | |
cap = cv2.VideoCapture(FILE) | |
last = 0 | |
last_img = None | |
if "SKIP_TO" in vars(): | |
n_time += SKIP_TO | |
cap.set(cv2.CAP_PROP_POS_MSEC, SKIP_TO.total_seconds()*1000) | |
def levenshtein(s1, s2): | |
if len(s1) > len(s2): | |
s1, s2 = s2, s1 | |
dst = range(len(s1) + 1) | |
for i2, c2 in enumerate(s2): | |
dst_ = [i2+1] | |
for i1, c1 in enumerate(s1): | |
if c1 == c2: | |
dst_.append(dst[i1]) | |
else: | |
dst_.append(1 + min((dst[i1], dst[i1 + 1], dst_[-1]))) | |
dst = dst_ | |
return dst[-1] | |
def process(pos, output, img): | |
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, KERNEL) | |
pil_img = Image.fromarray(img) | |
#pil_img.show() | |
# process text | |
extracted = tool.image_to_string(pil_img, lang=LANG) | |
extracted = extracted.replace("\n", " ") | |
text = [] | |
for c in extracted: | |
cat = unicodedata.category(c) | |
if cat == 'Ll' or cat == 'Lu' or c in SYMBOL_LIMS: | |
text.append(c) | |
text = ''.join(text).strip() | |
# delete one length words | |
words = text.split(' ') | |
words = list(filter(lambda word: not (len(word)<=1 or WORD_FILTER.search(word)!=None), words)) | |
text = ' '.join(words) | |
output.put((pos, text)) | |
try: | |
output = mp.Queue() | |
while(cap.isOpened()): | |
processes = [] | |
for x in range(NTHREADS): | |
_, img = cap.read() | |
for i in range(FR_SKIP): cap.grab() | |
img = img[TEXT_TOP:TEXT_BOTTOM, TEXT_LEFT:TEXT_RIGHT] | |
img = cv2.inRange(img, START_REGION, END_REGION) | |
if np.average(img) <= EMPTY_THRESH: # skip empty frames | |
output.put((x, None)) | |
elif last_img is not None: | |
diff = np.average(cv2.absdiff(img, last_img)) | |
if diff > ABSDIFF_THRESH: | |
processes.append(mp.Process(target=process, args=(x, output, img))) | |
else: # don't process similar frames | |
output.put((x, -1)) | |
else: | |
processes.append(mp.Process(target=process, args=(x, output, img))) | |
last_img = img | |
# run processes | |
for p in processes: | |
p.start() | |
# Exit the completed processes | |
for p in processes: | |
p.join() | |
# get + sort | |
results = [output.get() for i in range(NTHREADS)] | |
results.sort() | |
results = [r[1] for r in results] | |
for i, result in enumerate(results): | |
if result == -1: | |
if i == 0: | |
if subs: results[i] = subs[-1].content | |
else: results[i] = '' | |
else: results[i] = results[i-1] | |
# add to sub | |
for text in results: | |
if text: | |
if subs and levenshtein(subs[-1].content,text) <= LEV_LIM: | |
subs[-1].end += FR_DELTA | |
else: | |
subs.append(srt.Subtitle(index=len(subs)+1, | |
start=n_time, | |
end=(n_time+FR_DELTA), | |
content=text)) | |
n_time += FR_DELTA | |
print(time.time()-last,n_time, results) | |
last = time.time() | |
except: | |
pass | |
cap.release() | |
print(subs) | |
print("Finished composing, writing to file...") | |
with open(FILE_OUT, "w") as f: | |
f.write(srt.compose(subs)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment