Created
May 26, 2021 16:23
-
-
Save filipinascimento/9c8688722cdef9fd8d3ff64a73e9e18e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from time import sleep | |
import multiprocessing | |
import numpy as np | |
createWTRC = True | |
online = True | |
flipImg = True # feito em cpu | |
options = { | |
#"frame_size_reduction": 25, | |
} | |
imgSize = (600, 600) | |
dtype = 'uint8' | |
def process(s_arr): | |
import uvicorn | |
from vidgear.gears.asyncio import WebGear_RTC | |
import uvicorn, asyncio, cv2 | |
from av import VideoFrame | |
from aiortc import VideoStreamTrack | |
from vidgear.gears.asyncio.helper import reducer | |
class Custom_RTCServer(VideoStreamTrack): | |
""" | |
Custom Media Server using OpenCV, an inherit-class | |
to aiortc's VideoStreamTrack. | |
""" | |
def __init__(self, source=None): | |
super().__init__() | |
self.image = np.random.randint( | |
0, 255, (imgSize[0], imgSize[1], 3), | |
dtype=np.uint8) | |
self.ang = 0 | |
async def recv(self): | |
pts, time_base = await self.next_timestamp() | |
self.image = np.frombuffer(s_arr, dtype).reshape( | |
(imgSize[0], imgSize[1], 3)).astype('uint8') | |
if flipImg: | |
# self.image = np.fliplr(self.image) | |
self.image = np.flipud(self.image) | |
av_frame = VideoFrame.from_ndarray(self.image) | |
av_frame.pts = pts | |
av_frame.time_base = time_base | |
return av_frame | |
def terminate(self): | |
try: | |
if not (self.stream is None): | |
self.stream.release() | |
self.stream = None | |
except AttributeError: | |
pass | |
web = WebGear_RTC(logging=True, **options) | |
web.config["server"] = Custom_RTCServer() | |
uvicorn.run(web(), host="localhost", port=8000) | |
web.shutdown() | |
if __name__ == '__main__': | |
import vtk | |
from vtk.util.numpy_support import vtk_to_numpy | |
from os.path import join as pjoin | |
from fury import actor, window, colormap as cmap | |
import numpy as np | |
from fury.data.fetcher import fetch_viz_wiki_nw | |
arr = np.random.randint(0, 255, size=imgSize[0]*imgSize[1]*3).astype(dtype) | |
arr = np.ones(imgSize[0]*imgSize[1]*3).astype(dtype) | |
print(arr.shape) | |
s_arr = multiprocessing.RawArray('B', arr) | |
arr = None | |
if createWTRC: | |
p = multiprocessing.Process(target=process, args=(s_arr,)) | |
p.start() | |
createRTMP = False | |
def rtmp(s_arr): | |
pass | |
if createRTMP: | |
p = multiprocessing.Process(target=rtmp, args=(s_arr,)) | |
p.start() | |
np_array = np.frombuffer(s_arr, dtype) | |
print('\n', np_array.shape, '\n') | |
files, folder = fetch_viz_wiki_nw() | |
categories_file, edges_file, positions_file = sorted(files.keys()) | |
positions = np.loadtxt(pjoin(folder, positions_file)) | |
categories = np.loadtxt(pjoin(folder, categories_file), dtype=str) | |
edges = np.loadtxt(pjoin(folder, edges_file), dtype=int) | |
category2index = {category: i | |
for i, category in enumerate(np.unique(categories))} | |
index2category = np.unique(categories) | |
categoryColors = cmap.distinguishable_colormap(nb_colors=len(index2category)) | |
colors = np.array([categoryColors[category2index[category]] | |
for category in categories]) | |
radii = 1 + np.random.rand(len(positions)) | |
edgesPositions = [] | |
edgesColors = [] | |
for source, target in edges: | |
edgesPositions.append(np.array([positions[source], positions[target]])) | |
edgesColors.append(np.array([colors[source], colors[target]])) | |
edgesPositions = np.array(edgesPositions) | |
edgesColors = np.average(np.array(edgesColors), axis=1) | |
sphere_actor = actor.sphere(centers=positions, | |
colors=colors, | |
radii=radii*0.5, | |
theta=8, | |
phi=8, | |
) | |
lines_actor = actor.line(edgesPositions, | |
colors=edgesColors, | |
opacity=0.1, | |
) | |
scene = window.Scene() | |
# scene.add(lines_actor) | |
scene.add(sphere_actor) | |
scene.set_camera(position=(0, 0, 1000), focal_point=(0.0, 0.0, 0.0), | |
view_up=(0.0, 0.0, 0.0)) | |
showm = window.ShowManager(scene, reset_camera=False, size=( | |
imgSize[0], imgSize[1]), order_transparent=False, | |
# multi_samples=8 | |
) | |
#render_window = showm.vtkRenderWindow() | |
render_window = showm.window | |
if online: | |
#render_window.SetOffScreenRendering(1) | |
#render_window.AddRenderer(scene) | |
#render_window.SetSize(, imgSize[1]) | |
window_to_image_filter = vtk.vtkWindowToImageFilter() | |
window_to_image_filter.SetInput(render_window) | |
def callback(caller, timerevent): | |
#scene.GetActiveCamera().Azimuth(2) | |
window_to_image_filter.Update() | |
window_to_image_filter.Modified() | |
vtk_image = window_to_image_filter.GetOutput() | |
#h, w, _ = vtk_image.GetDimensions() | |
vtk_array = vtk_image.GetPointData().GetScalars() | |
#components = vtk_array.GetNumberOfComponents() | |
vtkarr = vtk_to_numpy(vtk_array).flatten().astype(dtype) | |
#print(vtkarr.shape, type(vtkarr), vtkarr.dtype) | |
np_array[:] = vtkarr | |
#render_window.Render() | |
#np_array[:] = np.ones(imgSize[0]*imgSize[1]*3, dtype=dtype) | |
#np_array[:] = np.ones(imgSize[0]*imgSize[1]*3, dtype=dtype) | |
showm.initialize() | |
# Run every 16 milliseconds | |
showm.add_timer_callback(True, 16, callback) | |
showm.start() | |
else: | |
render_window.AddRenderer(scene) | |
def callback(caller, timerevent): | |
scene.GetActiveCamera().Azimuth(2) | |
render_window.Render() | |
showm.initialize() | |
showm.add_timer_callback(True, 16, callback) | |
showm.start() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment