Created
October 3, 2019 21:25
-
-
Save frank9615/9fe16750bc72048f6a4a8566823bb02c to your computer and use it in GitHub Desktop.
Detecting colors (Hsv Color Space) - Opencv with Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# USAGE | |
# python distance_to_camera.py | |
# import the necessary packages | |
from imutils import paths | |
import numpy as np | |
import imutils | |
import cv2 | |
cap = cv2.VideoCapture(0) | |
while(1): | |
# Take each frame | |
_, image = cap.read() | |
# convertiamo in hsv | |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
hsv = cv2.GaussianBlur(hsv, (5, 5), 0) | |
# # | |
''' | |
sensitivity = 15 | |
lower_green = np.array([60 - sensitivity, 100, 100]) | |
upper_green = np.array([60 + sensitivity, 255, 255]) | |
''' | |
lower_green = np.array([25, 52, 72]) | |
upper_green = np.array([102, 255, 255]) | |
# Threshold the HSV image to get only blue colors | |
mask = cv2.inRange(hsv, lower_green, upper_green) | |
edged = cv2.Canny(mask, 35, 125) | |
cv2.imshow("mask",edged) | |
try : | |
cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) | |
cnts = imutils.grab_contours(cnts) | |
c = max(cnts, key=cv2.contourArea) | |
rect = cv2.minAreaRect(c) | |
box = np.int0(cv2.boxPoints(cv2.minAreaRect(c))) | |
cv2.drawContours(image, [box], -1, (255, 0, 0), 2) | |
cv2.imshow("image", image) | |
except: | |
pass | |
# Display | |
#cv2.imshow('image', image) | |
k = cv2.waitKey(5) & 0xFF | |
if k == 27: | |
break | |
cv2.destroyAllWindows() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment