Created
April 12, 2019 17:47
-
-
Save franperezlopez/83c7057ea2a30bae3f79eb971f5e8003 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from fastai import torch_core, layers | |
from fastai.basic_data import * | |
from fastai.core import * | |
from fastai.layers import embedding | |
from fastai.basic_train import Learner | |
from torch import nn, optim, as_tensor, Tensor | |
import torch | |
import logging | |
def tabularexperiment_learner(data:DataBunch, layers:Collection[int], emb_szs:Dict[str,int]=None, metrics=None, | |
ps:Collection[float]=None, emb_drop:float=0., y_range:OptRange=None, use_bn:bool=True, **learn_kwargs): | |
"Get a `Learner` using `data`, with `metrics`, including a `TabularModel` created using the remaining params." | |
emb_szs = data.get_emb_szs(ifnone(emb_szs, {})) | |
model = TabularExperimentModel(emb_szs, len(data.cont_names), out_sz=data.c, layers=layers, ps=ps, emb_drop=emb_drop, | |
y_range=y_range, use_bn=use_bn) | |
learner = Learner(data, model, metrics=metrics, **learn_kwargs) | |
learner.to_onnx = partial(to_onnx, data=data, model=model) | |
return learner | |
def to_onnx(file_path:str, data, model:str): | |
logging.info('getting data...') | |
dummy_input = next(iter(data.train_dl))[0] | |
logging.info(f'saviing {file_path} file ...') | |
torch.onnx.export(model, (dummy_input[0],dummy_input[1]), file_path) | |
class TabularExperimentModel (nn.Module): | |
def __init__(self, emb_szs:ListSizes, n_cont:int, out_sz:int, layers:Collection[int], ps:Collection[float]=None, | |
emb_drop:float=0., y_range:OptRange=None, use_bn:bool=True, bn_final:bool=False): | |
super().__init__() | |
ps = ifnone(ps, [0]*len(layers)) | |
ps = listify(ps, layers) | |
self.embeds = nn.ModuleList([embedding(ni, nf) for ni,nf in emb_szs]) | |
self.emb_drop = nn.Dropout(emb_drop) | |
self.bn_cont = nn.BatchNorm1d(n_cont) | |
#self.bn_sigm = nn.BatchNorm1d(out_sz) | |
n_emb = sum(e.embedding_dim for e in self.embeds) | |
self.n_emb,self.n_cont,self.y_range = n_emb,n_cont,y_range | |
sizes = self._get_sizes(layers, out_sz) | |
actns = [nn.ReLU(inplace=True)]*(len(sizes)-2) | |
layers = [] | |
for i,(n_in,n_out,dp,act) in enumerate(zip(sizes[:-2],sizes[1:-1],[0.]+ps,actns)): | |
layers += self.lin_bn_drop(n_in, n_out, bn=use_bn, p=dp, actn=act) | |
layers.append(nn.Linear(sizes[-2], sizes[-1])) | |
if bn_final: layers.append(nn.BatchNorm1d(sizes[-1])) | |
self.layers = nn.Sequential(*layers) | |
def lin_bn_drop(self, n_in:int, n_out:int, bn:bool=True, p:float=0., actn:Optional[nn.Module]=None): | |
"Sequence of batchnorm (if `bn`), dropout (with `p`) and linear (`n_in`,`n_out`) layers followed by `actn`." | |
layers = [nn.Linear(n_in, n_out)] | |
if bn: | |
layers.append(nn.BatchNorm1d(n_out)) | |
if p > 0: | |
layers.append(nn.Dropout(p)) | |
if actn is not None: | |
layers.append(actn) | |
return layers | |
def _get_sizes(self, layers, out_sz): | |
return [self.n_emb + self.n_cont] + layers + [out_sz] | |
def forward(self, x_cat:Tensor, x_cont:Tensor) -> Tensor: | |
if self.n_emb > 0: | |
x_emb = [e(x_cat[:,i]) for i,e in enumerate(self.embeds)] | |
x_emb = torch.cat(x_emb, 1) | |
x_feat = self.emb_drop(x_emb) | |
if self.n_cont > 0: | |
x_cont = self.bn_cont(x_cont) | |
x_feat = torch.cat([x_feat, x_cont], 1) if self.n_emb != 0 else x_cont | |
x_feat = self.layers(x_feat) | |
if self.y_range is not None: | |
#x_emb = self.bn_sigm(x_emb) | |
x_feat = torch.sigmoid(x_feat) | |
x_feat = (self.y_range[1]-self.y_range[0]) * x_feat + self.y_range[0] | |
return x_feat |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment