Last active
November 3, 2017 16:55
-
-
Save frbl/1411ee1df13154bd22092a7894503eb2 to your computer and use it in GitHub Desktop.
Logistic regression with predicted probabilities constrained / capped / thresholded
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env Rscript | |
## Constrained logistic regression | |
## In this gist we create a regression for which the predicted probabilities are contstrained. That is, they can not be | |
## less than a minimum of delta, or a maxiumum of 1 - delta. | |
## Based on: | |
## - https://stats.idre.ucla.edu/r/dae/logit-regression/ | |
## - https://github.com/achambaz/tsml.cara.rct/blob/2b2aa282d4a11c601b37cacb368b67d03f6e8fc9/R/misc.R#L440 | |
## - https://github.com/achambaz/tsml.cara.rct/blob/fd426c2a6f91b692d379b4765d9900151d09daa6/R/targetGstar.R#L1 | |
## - https://stackoverflow.com/questions/15931403/modify-glm-function-to-adopt-user-specified-link-function-in-r | |
## - help file of `family` and `glm` | |
## First fit a regular logistic regression on some toy example | |
mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv") | |
mydata$rank <- factor(mydata$rank) | |
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial") | |
summary(mylogit) | |
range(predict(mylogit, type='response')) | |
## Then create the bounded link functions. Change delta in the function to the actual bounds | |
mydelta = 0.1 | |
bounded_logit <- function(delta) { | |
structure( | |
list(## mu mapsto logit( [mu - delta]/[1 - 2 delta] ). | |
linkfun = function(mu) { | |
qlogis((mu-delta)/(1-2*delta)) | |
}, | |
## eta mapsto delta + (1 - 2 delta) expit (eta). | |
linkinv = function(eta) { | |
delta + (1-2*delta)*plogis(eta) | |
}, | |
## derivative of inverse link wrt eta | |
mu.eta = function(eta) { | |
expit.eta <- plogis(eta) | |
(1-2*delta)*expit.eta*(1-expit.eta) | |
}, | |
## test of validity for eta | |
valideta = function(...) TRUE, | |
name = 'bounded-logit' | |
), | |
class = "link-glm" | |
) | |
} | |
## Run som basic tests to check wether the derivatives are correct | |
bd_logit <- bounded_logit(mydelta) | |
## check invertibility | |
bd_logit$linkfun(bd_logit$linkinv(27)) | |
library("numDeriv") | |
## check derivative | |
all.equal(grad(bd_logit$linkinv,2),bd_logit$mu.eta(2)) | |
## Fit the constrained regression | |
mylogit_bounded <- NULL | |
mylogit_bounded <- glm(admit ~ gre + gpa + rank, data = mydata, family = binomial(link = bd_logit), start = rep(1/6, 6)) | |
summary(mylogit_bounded) | |
## Do some checks / print a histogram | |
min(predict(mylogit_bounded, type='response')) > delta | |
max(predict(mylogit_bounded, type='response')) < 1 - delta | |
h1 <- predict(mylogit, type='response') | |
h2 <- predict(mylogit_bounded, type='response') | |
hist(h1, breaks=100, col=rgb(1,0,0,0.5), xlim=c(0,1), ylim=c(0,15), main="Overlapping Histogram", xlab="Variable") | |
hist(h2, breaks=100, col=rgb(0,0,1,0.5), add=T) | |
box() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment