Created
January 18, 2018 00:46
-
-
Save gabrielgarza/ca32c42f2122ad6251557eafb6aa03b0 to your computer and use it in GitHub Desktop.
Policy Gradient - Network
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def build_network(self): | |
# Create placeholders | |
with tf.name_scope('inputs'): | |
self.X = tf.placeholder(tf.float32, shape=(self.n_x, None), name="X") | |
self.Y = tf.placeholder(tf.float32, shape=(self.n_y, None), name="Y") | |
self.discounted_episode_rewards_norm = tf.placeholder(tf.float32, [None, ], name="actions_value") | |
# Initialize parameters | |
units_layer_1 = 10 | |
units_layer_2 = 10 | |
units_output_layer = self.n_y | |
with tf.name_scope('parameters'): | |
W1 = tf.get_variable("W1", [units_layer_1, self.n_x], initializer = tf.contrib.layers.xavier_initializer(seed=1)) | |
b1 = tf.get_variable("b1", [units_layer_1, 1], initializer = tf.contrib.layers.xavier_initializer(seed=1)) | |
W2 = tf.get_variable("W2", [units_layer_2, units_layer_1], initializer = tf.contrib.layers.xavier_initializer(seed=1)) | |
b2 = tf.get_variable("b2", [units_layer_2, 1], initializer = tf.contrib.layers.xavier_initializer(seed=1)) | |
W3 = tf.get_variable("W3", [self.n_y, units_layer_2], initializer = tf.contrib.layers.xavier_initializer(seed=1)) | |
b3 = tf.get_variable("b3", [self.n_y, 1], initializer = tf.contrib.layers.xavier_initializer(seed=1)) | |
# Forward prop | |
with tf.name_scope('layer_1'): | |
Z1 = tf.add(tf.matmul(W1,self.X), b1) | |
A1 = tf.nn.relu(Z1) | |
with tf.name_scope('layer_2'): | |
Z2 = tf.add(tf.matmul(W2, A1), b2) | |
A2 = tf.nn.relu(Z2) | |
with tf.name_scope('layer_3'): | |
Z3 = tf.add(tf.matmul(W3, A2), b3) | |
A3 = tf.nn.softmax(Z3) | |
# Softmax outputs, we need to transpose as tensorflow nn functions expects them in this shape | |
logits = tf.transpose(Z3) | |
labels = tf.transpose(self.Y) | |
self.outputs_softmax = tf.nn.softmax(logits, name='A3') | |
with tf.name_scope('loss'): | |
neg_log_prob = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels) | |
loss = tf.reduce_mean(neg_log_prob * self.discounted_episode_rewards_norm) # reward guided loss | |
with tf.name_scope('train'): | |
self.train_op = tf.train.AdamOptimizer(self.lr).minimize(loss) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment