Last active
April 28, 2020 00:06
-
-
Save garybradski/c01ae661926c8d1c63b99ad769121258 to your computer and use it in GitHub Desktop.
Segment by floodfill, find contours, find polynomial contours, find quadrilaterals, find convex quadrilaterals, find the centroid of convex quadrilateras
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
''' | |
Floodfill sample improved by Gary Bradski to find the contour, convert to polygon, test for qaudrilateral | |
make sure the quadrilateral is convex and find the center of the convex quadrilateral. Also, read in a directory of | |
images, not just one. | |
Usage: | |
floodfill.py <Directory of images> | |
Click on the image to set seed point | |
Keys: | |
c - toggle 4/8 connectivity | |
f - toggle floating range | |
g - toggle gaussian blur | |
SPACE - go to next image | |
ESC - exit | |
''' | |
# Python 2/3 compatibility | |
from __future__ import print_function | |
import numpy as np | |
import cv2 | |
from os import listdir | |
from os.path import isfile, join | |
import sys | |
from copy import deepcopy | |
class App(): | |
def __init__(self): | |
cv2.namedWindow('floodfill', cv2.WINDOW_NORMAL) | |
cv2.resizeWindow('floodfill', 1000, 1000) | |
cv2.setMouseCallback('floodfill', self.onmouse) | |
cv2.createTrackbar('lo', 'floodfill', 20, 255, self.update) | |
cv2.createTrackbar('hi', 'floodfill', 20, 255, self.update) | |
self.gaussian = False | |
def update(self, dummy=None): | |
if self.seed_pt is None: | |
cv2.imshow('floodfill', self.img) | |
return | |
flooded = self.img.copy() | |
self.mask[:] = 0 | |
lo = cv2.getTrackbarPos('lo', 'floodfill') | |
hi = cv2.getTrackbarPos('hi', 'floodfill') | |
# SEGMENT THE AREA VIA FLOODFILL | |
flags = self.connectivity | |
if self.fixed_range: | |
flags |= cv2.FLOODFILL_FIXED_RANGE | |
cv2.floodFill(flooded, self.mask, self.seed_pt, (255, 255, 255), (lo,) * 3, (hi,) * 3, flags) | |
self.mask *= 0 #Reset the mask | |
flags = self.connectivity | |
flags |= cv2.FLOODFILL_MASK_ONLY | cv2.FLOODFILL_FIXED_RANGE | |
flags |= (128<<8) | |
cv2.floodFill(self.img, self.mask, self.seed_pt, (255, 255, 255), (lo,) * 3, (hi,) * 3, flags) | |
cv2.imshow('mask',self.mask) | |
cv2.imshow('i',self.img) | |
cnts, _ = cv2.findContours(self.mask[1:-1,1:-1], cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
print("contors (len {})".format(len(cnts))) | |
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10] # 3rd one is where we clicked | |
# loop over our contours | |
cnt = 0 | |
print("STARTING OVER CONTOURS") | |
for c in cnts: | |
peri = cv2.arcLength(c, True) | |
if peri > 400 or peri < 40: | |
print("{:3d} peri len = {} ... SKIPPING!".format(cnt,peri)) | |
continue | |
print("{:3d} peri len = {}".format(cnt, peri)) | |
cnt += 1 | |
# APPROXIMATE AS A POLYNOMIAL | |
approx = cv2.approxPolyDP(c, 0.02 * peri, True) | |
# FIND QUADRILATERALS | |
if len(approx) == 4: | |
print(" Is a quadrilateral") | |
# FIND THE CONVEX ONES | |
hull = cv2.convexHull(approx, returnPoints = False) | |
print(" Is a quadrilateral with len(hull)= {}".format(len(hull))) | |
if len(hull) == 4: | |
print(" So: is also convex!") | |
# FIND THE CENTER OF THE CONTOUR | |
M = cv2.moments(approx) | |
cX = int(M["m10"] / M["m00"]) | |
cY = int(M["m01"] / M["m00"]) | |
cv2.drawContours(flooded, [approx], -1, (0, 255, 0), cv2.FILLED) #1) | |
cv2.circle(flooded,(cX,cY),3,(0,200,0),1) | |
cv2.circle(flooded, self.seed_pt, 2, (0, 0, 255), -1) | |
cv2.imshow('floodfill', flooded) | |
def onmouse(self, event, x, y, flags, param): | |
if event == cv2.EVENT_LBUTTONDOWN: | |
self.seed_pt = x, y | |
self.update() | |
def run(self,fn): | |
self.img = cv2.imread(cv2.samples.findFile(fn)) | |
if self.img is None: | |
print('Failed to load image file:', fn) | |
sys.exit(1) | |
self.img_orig = deepcopy(self.img) | |
self.img_gauss = cv2.GaussianBlur(self.img,(5,5),0) | |
h, w = self.img.shape[:2] | |
self.mask = np.zeros((h+2, w+2), np.uint8) | |
self.seed_pt = None | |
self.fixed_range = True | |
self.connectivity = 4 | |
self.update() | |
while True: | |
ch = cv2.waitKey() | |
if ch == ord(' '): # Next image | |
print("==================================") | |
break | |
if ch == 27: # Exit program | |
print('DONE!') | |
break | |
if ch == ord('f'): #float range | |
self.fixed_range = not self.fixed_range | |
print('using %s range' % ('floating', 'fixed')[self.fixed_range]) | |
self.update() | |
if ch == ord('g'): #Gaussian | |
self.gaussian = not self.gaussian | |
print('gaussian = {}'.format(self.gaussian)) | |
if self.gaussian: | |
self.img = self.img_gauss | |
else: | |
self.img = self.img_orig | |
self.update() | |
if ch == ord('c'): # 4 or 8 connectivity | |
self.connectivity = 12-self.connectivity | |
print('connectivity =', self.connectivity) | |
self.update() | |
return ch | |
if __name__ == '__main__': | |
# Window | |
from_path = sys.argv[1] | |
img_files = [f for f in listdir(from_path) if isfile(join(from_path, f))] | |
cnt = 0 | |
for f in img_files: | |
print("{:3d} For file {}:".format(cnt,f)) | |
cnt += 1 | |
print(__doc__) | |
k = App().run(join(from_path,f)) | |
#k = cv.waitKey() & 0xFF | |
if k == 27 or k == ord('q'): | |
break | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment