Created
August 25, 2025 12:23
-
-
Save gau-nernst/1d89bb2d064763dbaddbe8cca862adf7 to your computer and use it in GitHub Desktop.
PyTorch's built-in varlen attention
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import Tensor | |
def varlen_attn( | |
query: Tensor, | |
key: Tensor, | |
value: Tensor, | |
cum_seq_q: Tensor, | |
cum_seq_k: Tensor, | |
max_q: int, | |
max_k: int, | |
dropout_p: float = 0.0, | |
is_causal: bool = False, | |
): | |
output, softmax_lse, rng_state, _, _ = torch.ops.aten._flash_attention_forward( | |
query, | |
key, | |
value, | |
cum_seq_q, | |
cum_seq_k, | |
max_q, | |
max_k, | |
dropout_p, | |
is_causal, | |
return_debug_mask=False, | |
) | |
return output | |
if __name__ == "__main__": | |
import flash_attn | |
num_heads_q = 4 | |
num_heads_k = 2 | |
DIM = 128 | |
q_list = [] | |
k_list = [] | |
v_list = [] | |
offsets_q = [0] | |
offsets_k = [0] | |
max_q = 0 | |
max_k = 0 | |
for _ in range(5): | |
len_q, len_k = torch.randint(16, 1024, size=(2,)).tolist() | |
q_list.append(torch.randn(len_q, num_heads_q, DIM, device="cuda", dtype=torch.bfloat16)) | |
k_list.append(torch.randn(len_k, num_heads_k, DIM, device="cuda", dtype=torch.bfloat16)) | |
v_list.append(torch.randn(len_k, num_heads_k, DIM, device="cuda", dtype=torch.bfloat16)) | |
offsets_q.append(offsets_q[-1] + len_q) | |
offsets_k.append(offsets_k[-1] + len_k) | |
max_q = max(max_q, len_q) | |
max_k = max(max_k, len_k) | |
q = torch.cat(q_list).requires_grad_() | |
k = torch.cat(k_list).requires_grad_() | |
v = torch.cat(v_list).requires_grad_() | |
cu_q = torch.tensor(offsets_q, device="cuda", dtype=torch.int32) | |
cu_k = torch.tensor(offsets_k, device="cuda", dtype=torch.int32) | |
q_ref = q.detach().requires_grad_() | |
k_ref = k.detach().requires_grad_() | |
v_ref = v.detach().requires_grad_() | |
out = varlen_attn(q, k, v, cu_q, cu_k, max_q, max_k) | |
out_ref = flash_attn.flash_attn_varlen_func(q_ref, k_ref, v_ref, cu_q, cu_k, max_q, max_k) | |
grad = torch.randn_like(out) | |
out.backward(grad) | |
out_ref.backward(grad) | |
@torch.no_grad() | |
def check(out: Tensor, ref: Tensor): | |
diff = out.float() - ref.float() | |
rel_diff = diff.abs() / ref.abs().clip(1e-4) | |
mean_rel_diff = rel_diff.mean().item() | |
max_rel_diff = rel_diff.max() | |
pct = (rel_diff < 1e-6).float().mean() | |
print(f"{mean_rel_diff=:.2e}, {max_rel_diff:.2e}, {pct * 100:.2f}% elements have relative error<1e-6") | |
check(out, out_ref) # mean_rel_diff=8.22e-07, 3.00e-01, 99.99% elements have relative error<1e-6 | |
check(q.grad, q_ref.grad) # mean_rel_diff=4.00e-06, 1.46e-01, 99.95% elements have relative error<1e-6 | |
check(k.grad, k_ref.grad) # mean_rel_diff=1.10e-05, 6.10e-01, 99.92% elements have relative error<1e-6 | |
check(v.grad, v_ref.grad) # mean_rel_diff=7.12e-06, 3.33e-01, 99.95% elements have relative error<1e-6 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment