Last active
July 9, 2021 11:53
-
-
Save gbersac/9ee5cadfdcc34c4b4826 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import os | |
def computeCost(X, y, theta): | |
inner = np.power(((X * theta.T) - y), 2) | |
return np.sum(inner) / (2 * len(X)) | |
def gradientDescent(X, y, theta, alpha, iters): | |
temp = np.matrix(np.zeros(theta.shape)) | |
parameters = int(theta.ravel().shape[1]) | |
cost = np.zeros(iters) | |
for i in range(iters): | |
error = (X * theta.T) - y | |
for j in range(parameters): | |
term = np.multiply(error, X[:,j]) | |
temp[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term)) | |
theta = temp | |
cost[i] = computeCost(X, y, theta) | |
return theta, cost | |
# get data | |
path = os.getcwd() + '/data.csv' | |
data = pd.read_csv(path, header=None, names=['Population', 'Profit']) | |
data.insert(0, 'Ones', 1) | |
alpha = 0.01 | |
iters = 1000 | |
# set X (training data) and y (target variable) | |
cols = data.shape[1] | |
X = data.iloc[:,0:cols-1] | |
y = data.iloc[:,cols-1:cols] | |
X = np.matrix(X.values) | |
y = np.matrix(y.values) | |
theta = np.matrix(np.array([0,0])) | |
print "Initial cost: ", computeCost(X, y, theta) | |
# perform linear regression | |
g, cost = gradientDescent(X, y, theta, alpha, iters) | |
print "Theta: ", g | |
print "End cost: ", computeCost(X, y, g) | |
# plotting data | |
x = np.linspace(data.Population.min(), data.Population.max(), 100) | |
f = g[0, 0] + (g[0, 1] * x) | |
fig, ax = plt.subplots(figsize=(12,8)) | |
ax.plot(x, f, 'r', label='Prediction') | |
ax.scatter(data.Population, data.Profit, label='Traning Data') | |
ax.legend(loc=2) | |
ax.set_xlabel('Population') | |
ax.set_ylabel('Profit') | |
ax.set_title('Predicted Profit vs. Population Size') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment