Created
October 16, 2015 16:13
-
-
Save ghl3/f33a1c18852e5386ea39 to your computer and use it in GitHub Desktop.
Plot a table of numeric and nominal features
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def plot_table(features, targets): | |
for idx, feature in enumerate(features.columns): | |
grouped = loans.groupby(targets) | |
if idx % 2==0: | |
fig = plt.figure(figsize=(16,4)) | |
plt.subplot(1, 2, idx % 2 + 1) | |
vals = loans[feature][pd.notnull(loans[feature])] | |
dtype = grouped[feature].obj.dtype | |
if dtype == 'float64': | |
left = min(vals) | |
right = vals.quantile(0.99) | |
if left == right: | |
right = left + 0.5 | |
left = left - 0.5 | |
delta = (right-left)/10 | |
bins = np.arange(left, right, delta) | |
for name, srs in grouped[feature]: | |
srs.hist(alpha=0.5, bins=bins, label=name, normed=True, | |
color='b' if name=='GOOD' else 'g') | |
else: | |
for name, srs in grouped[feature]: | |
values = srs.value_counts(normalize=True) | |
values[:10].plot(alpha=0.5, kind='bar', label=name, | |
color='b' if name=='GOOD' else 'g') | |
plt.legend(loc='best') | |
plt.xlabel("{} ({})".format(feature, 'NUMERIC' if dtype=='float64' else 'NOMINAL')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment