Created
December 21, 2023 02:30
-
-
Save gin-melodic/8e0063be2a30784d5477d01761798e61 to your computer and use it in GitHub Desktop.
Tips of image processing with Sketchpad on Gradio 4.X
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gradio as gr | |
import torch | |
from PIL import Image, ImageOps | |
from torchvision import transforms | |
from model import NeuralNetwork | |
def predict_image(img_data): | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Load model | |
model = NeuralNetwork().to(device) | |
model.load_state_dict(torch.load('./mnist.pth', map_location=device)) | |
model.eval() | |
img = img_data['composite'] # now the image is RGBA | |
# convert to rgb | |
img_rgb = Image.new("RGB", img.size, (255, 255, 255)) | |
img_rgb.paste(img, mask=img.split()[3]) | |
img_rgb = img_rgb.resize((28, 28)) # resize to 28x28 | |
img_rgb = ImageOps.invert(img_rgb) | |
trans = transforms.Compose([ | |
transforms.Grayscale(1), | |
transforms.ToTensor() | |
]) | |
img_tensor = trans(img_rgb).unsqueeze(0).to(device) | |
# predict | |
with torch.no_grad(): | |
output = model(img_tensor) | |
probs = torch.nn.functional.softmax(output[0], 0) | |
predicted = torch.argmax(probs).item() | |
confidence = probs[predicted].item() # probability of the predicted label | |
return predicted, f"{confidence * 100:.2f}%" | |
pad = gr.Sketchpad(type="pil", image_mode="RGBA") | |
iface = gr.Interface(fn=predict_image, inputs=pad, outputs=["label", "text"]) | |
iface.launch() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment