Created
June 7, 2024 06:50
-
-
Save glorat/4c00ffc0546f326e951bb83bff9817f5 to your computer and use it in GitHub Desktop.
ChatGPTClient - Typescript
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// eslint-disable-next-line @typescript-eslint/ban-ts-comment | |
// @ts-nocheck | |
/** | |
* Taken from https://github.com/glorat/node-chatgpt-api/blob/main/src/ChatGPTClient.js | |
* but with the following mods to make it browser friendly: | |
* - Replace cacheOptions with cache, to decouple from keyv, which doesn't work in browser | |
* - Remove undici, which doesn't work in browser | |
* - Remove proxying support | |
* - use uuid instead of crypto | |
* | |
* and finally... converted to typescript | |
*/ | |
// import './fetch-polyfill.js'; // undici polyfill for nodejs | |
import { encodingForModel, getEncoding } from 'js-tiktoken' | |
import { fetchEventSource } from '@waylaidwanderer/fetch-event-source' | |
import { v4 as uuidv4 } from 'uuid' | |
const CHATGPT_MODEL = 'gpt-3.5-turbo' | |
const tokenizersCache = {} | |
interface MyChatMessage { | |
role: 'system' | 'User' | 'ChatGPT' | string | |
parentMessageId: string | |
id: string | |
message: any | |
} | |
interface ConversationCache { | |
set: (key: string, value: Conversation) => Promise<void> | |
get: (key: string) => Promise<Conversation> | |
} | |
interface Conversation { | |
messages: MyChatMessage[] | |
createdAt: number | |
} | |
export default class ChatGPTClient { | |
private apiKey: string | |
private conversationsCache: ConversationCache | |
private options: any | |
private modelOptions: any | |
private isChatGptModel: boolean | |
private isUnofficialChatGptModel: boolean | |
private maxContextTokens: number | |
private maxPromptTokens: number | |
private maxResponseTokens: number | |
private userLabel: any | |
private startToken: string | |
private gptEncoder: any | |
private chatGptLabel: any | |
private endToken: string | |
private completionsUrl: string | |
constructor( | |
apiKey, | |
options = {}, | |
cache = { | |
get: async () => {}, | |
set: () => {}, | |
} | |
) { | |
this.apiKey = apiKey | |
this.conversationsCache = cache | |
this.setOptions(options) | |
} | |
setOptions(options) { | |
if (this.options && !this.options.replaceOptions) { | |
// nested options aren't spread properly, so we need to do this manually | |
this.options.modelOptions = { | |
...this.options.modelOptions, | |
...options.modelOptions, | |
} | |
delete options.modelOptions | |
// now we can merge options | |
this.options = { | |
...this.options, | |
...options, | |
} | |
} else { | |
this.options = options | |
} | |
if (this.options.openaiApiKey) { | |
this.apiKey = this.options.openaiApiKey | |
} | |
const modelOptions = this.options.modelOptions || {} | |
this.modelOptions = { | |
...modelOptions, | |
// set some good defaults (check for undefined in some cases because they may be 0) | |
model: modelOptions.model || CHATGPT_MODEL, | |
temperature: | |
typeof modelOptions.temperature === 'undefined' | |
? 0.8 | |
: modelOptions.temperature, | |
top_p: typeof modelOptions.top_p === 'undefined' ? 1 : modelOptions.top_p, | |
presence_penalty: | |
typeof modelOptions.presence_penalty === 'undefined' | |
? 1 | |
: modelOptions.presence_penalty, | |
stop: modelOptions.stop, | |
} | |
this.isChatGptModel = this.modelOptions.model.startsWith('gpt-') | |
const { isChatGptModel } = this | |
this.isUnofficialChatGptModel = | |
this.modelOptions.model.startsWith('text-chat') || | |
this.modelOptions.model.startsWith('text-davinci-002-render') | |
const { isUnofficialChatGptModel } = this | |
// Davinci models have a max context length of 4097 tokens. | |
this.maxContextTokens = | |
this.options.maxContextTokens || (isChatGptModel ? 4095 : 4097) | |
// I decided to reserve 1024 tokens for the response. | |
// The max prompt tokens is determined by the max context tokens minus the max response tokens. | |
// Earlier messages will be dropped until the prompt is within the limit. | |
this.maxResponseTokens = this.modelOptions.max_tokens || 1024 | |
this.maxPromptTokens = | |
this.options.maxPromptTokens || | |
this.maxContextTokens - this.maxResponseTokens | |
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) { | |
throw new Error( | |
`maxPromptTokens + max_tokens (${this.maxPromptTokens} + ${ | |
this.maxResponseTokens | |
} = ${ | |
this.maxPromptTokens + this.maxResponseTokens | |
}) must be less than or equal to maxContextTokens (${ | |
this.maxContextTokens | |
})` | |
) | |
} | |
this.userLabel = this.options.userLabel || 'User' | |
this.chatGptLabel = this.options.chatGptLabel || 'ChatGPT' | |
if (isChatGptModel) { | |
// Use these faux tokens to help the AI understand the context since we are building the chat log ourselves. | |
// Trying to use "<|im_start|>" causes the AI to still generate "<" or "<|" at the end sometimes for some reason, | |
// without tripping the stop sequences, so I'm using "||>" instead. | |
this.startToken = '||>' | |
this.endToken = '' | |
this.gptEncoder = ChatGPTClient.getTokenizer('cl100k_base') | |
} else if (isUnofficialChatGptModel) { | |
this.startToken = '<|im_start|>' | |
this.endToken = '<|im_end|>' | |
this.gptEncoder = ChatGPTClient.getTokenizer('text-davinci-003', true, { | |
'<|im_start|>': 100264, | |
'<|im_end|>': 100265, | |
}) | |
} else { | |
// Previously I was trying to use "<|endoftext|>" but there seems to be some bug with OpenAI's token counting | |
// system that causes only the first "<|endoftext|>" to be counted as 1 token, and the rest are not treated | |
// as a single token. So we're using this instead. | |
this.startToken = '||>' | |
this.endToken = '' | |
try { | |
this.gptEncoder = ChatGPTClient.getTokenizer( | |
this.modelOptions.model, | |
true | |
) | |
} catch { | |
this.gptEncoder = ChatGPTClient.getTokenizer('text-davinci-003', true) | |
} | |
} | |
if (!this.modelOptions.stop) { | |
const stopTokens = [this.startToken] | |
if (this.endToken && this.endToken !== this.startToken) { | |
stopTokens.push(this.endToken) | |
} | |
stopTokens.push(`\n${this.userLabel}:`) | |
stopTokens.push('<|diff_marker|>') | |
// I chose not to do one for `chatGptLabel` because I've never seen it happen | |
// this.modelOptions.stop = stopTokens | |
} | |
if (this.options.reverseProxyUrl) { | |
this.completionsUrl = this.options.reverseProxyUrl | |
} else if (isChatGptModel) { | |
this.completionsUrl = 'https://api.openai.com/v1/chat/completions' | |
} else { | |
this.completionsUrl = 'https://api.openai.com/v1/completions' | |
} | |
return this | |
} | |
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) { | |
if (tokenizersCache[encoding]) { | |
return tokenizersCache[encoding] | |
} | |
let tokenizer | |
if (isModelName) { | |
tokenizer = encodingForModel(encoding, extendSpecialTokens) | |
} else { | |
tokenizer = getEncoding(encoding, extendSpecialTokens) | |
} | |
tokenizersCache[encoding] = tokenizer | |
return tokenizer | |
} | |
async getCompletion(input, onProgress, abortController = null) { | |
if (!abortController) { | |
abortController = new AbortController() | |
} | |
const modelOptions = { ...this.modelOptions } | |
if (typeof onProgress === 'function') { | |
modelOptions.stream = true | |
} | |
if (this.isChatGptModel) { | |
modelOptions.messages = input | |
} else { | |
modelOptions.prompt = input | |
} | |
const { debug } = this.options | |
const url = this.completionsUrl | |
if (debug) { | |
console.debug() | |
console.debug(url) | |
console.debug(modelOptions) | |
console.debug() | |
} | |
const opts: any = { | |
method: 'POST', | |
headers: { | |
'Content-Type': 'application/json', | |
}, | |
body: JSON.stringify(modelOptions), | |
// dispatcher: new Agent({ | |
// bodyTimeout: 0, | |
// headersTimeout: 0, | |
// }), | |
} | |
if (this.apiKey && this.options.azure && this.options.reverseProxyUrl) { | |
opts.headers['api-key'] = this.apiKey | |
} else if (this.apiKey) { | |
opts.headers.Authorization = `Bearer ${this.apiKey}` | |
} | |
if (this.options.headers) { | |
opts.headers = { ...opts.headers, ...this.options.headers } | |
} | |
if (modelOptions.stream) { | |
// eslint-disable-next-line no-async-promise-executor | |
return new Promise<void>(async (resolve, reject) => { | |
try { | |
let done = false | |
await fetchEventSource(url, { | |
...opts, | |
signal: abortController.signal, | |
async onopen(response) { | |
if (response.status === 200) { | |
return | |
} | |
if (debug) { | |
console.debug(response) | |
} | |
let error | |
try { | |
const body = await response.text() | |
error = new Error( | |
`Failed to send message. HTTP ${response.status} - ${body}` | |
) | |
error.status = response.status | |
error.json = JSON.parse(body) | |
} catch { | |
error = | |
error || | |
new Error(`Failed to send message. HTTP ${response.status}`) | |
} | |
throw error | |
}, | |
onclose() { | |
if (debug) { | |
console.debug( | |
'Server closed the connection unexpectedly, returning...' | |
) | |
} | |
// workaround for private API not sending [DONE] event | |
if (!done) { | |
onProgress('[DONE]') | |
abortController.abort() | |
resolve() | |
} | |
}, | |
onerror(err) { | |
if (debug) { | |
console.debug(err) | |
} | |
// rethrow to stop the operation | |
throw err | |
}, | |
onmessage(message) { | |
if (debug) { | |
console.debug(message) | |
} | |
if (!message.data || message.event === 'ping') { | |
return | |
} | |
if (message.data === '[DONE]') { | |
onProgress('[DONE]') | |
abortController.abort() | |
resolve() | |
done = true | |
return | |
} | |
onProgress(JSON.parse(message.data)) | |
}, | |
}) | |
} catch (err) { | |
reject(err) | |
} | |
}) | |
} | |
const response = await fetch(url, { | |
...opts, | |
signal: abortController.signal, | |
}) | |
if (response.status !== 200) { | |
const body = await response.text() | |
const error: any = new Error( | |
`Failed to send message. HTTP ${response.status} - ${body}` | |
) | |
error.status = response.status | |
try { | |
error.json = JSON.parse(body) | |
} catch { | |
error.body = body | |
} | |
throw error | |
} | |
return response.json() | |
} | |
async generateTitle(userMessage, botMessage) { | |
const instructionsPayload = { | |
role: 'system', | |
content: `Write an extremely concise subtitle for this conversation with no more than a few words. All words should be capitalized. Exclude punctuation. | |
||>Message: | |
${userMessage.message} | |
||>Response: | |
${botMessage.message} | |
||>Title:`, | |
} | |
const titleGenClientOptions = JSON.parse(JSON.stringify(this.options)) | |
titleGenClientOptions.modelOptions = { | |
model: 'gpt-3.5-turbo', | |
temperature: 0, | |
presence_penalty: 0, | |
frequency_penalty: 0, | |
} | |
const titleGenClient = new ChatGPTClient(this.apiKey, titleGenClientOptions) | |
const result = await titleGenClient.getCompletion( | |
[instructionsPayload], | |
null | |
) | |
// remove any non-alphanumeric characters, replace multiple spaces with 1, and then trim | |
return result.choices[0].message.content | |
.replace(/[^a-zA-Z0-9' ]/g, '') | |
.replace(/\s+/g, ' ') | |
.trim() | |
} | |
async sendMessage(message, opts: any = {}) { | |
if (opts.clientOptions && typeof opts.clientOptions === 'object') { | |
this.setOptions(opts.clientOptions) | |
} | |
const conversationId = opts.conversationId || uuidv4() | |
const parentMessageId = opts.parentMessageId || uuidv4() | |
let conversation: Conversation = | |
typeof opts.conversation === 'object' | |
? opts.conversation | |
: await this.conversationsCache.get(conversationId) | |
let isNewConversation = false | |
if (!conversation) { | |
conversation = { | |
messages: [], | |
createdAt: Date.now(), | |
} | |
isNewConversation = true | |
} | |
const shouldGenerateTitle = opts.shouldGenerateTitle && isNewConversation | |
const userMessage: MyChatMessage = { | |
id: uuidv4(), | |
parentMessageId, | |
role: 'User', | |
message, | |
} | |
conversation.messages.push(userMessage) | |
// Doing it this way instead of having each message be a separate element in the array seems to be more reliable, | |
// especially when it comes to keeping the AI in character. It also seems to improve coherency and context retention. | |
const { prompt: payload, context } = await this.buildPrompt( | |
conversation.messages, | |
userMessage.id, | |
{ | |
isChatGptModel: this.isChatGptModel, | |
promptPrefix: opts.promptPrefix, | |
} | |
) | |
if (this.options.keepNecessaryMessagesOnly) { | |
conversation.messages = context | |
} | |
let reply = '' | |
let result = null | |
if (typeof opts.onProgress === 'function') { | |
await this.getCompletion( | |
payload, | |
(progressMessage) => { | |
if (progressMessage === '[DONE]') { | |
return | |
} | |
const token = this.isChatGptModel | |
? progressMessage.choices[0].delta.content | |
: progressMessage.choices[0].text | |
// first event's delta content is always undefined | |
if (!token) { | |
return | |
} | |
if (this.options.debug) { | |
console.debug(token) | |
} | |
if (token === this.endToken) { | |
return | |
} | |
opts.onProgress(token) | |
reply += token | |
}, | |
opts.abortController || new AbortController() | |
) | |
} else { | |
result = await this.getCompletion( | |
payload, | |
null, | |
opts.abortController || new AbortController() | |
) | |
if (this.options.debug) { | |
console.debug(JSON.stringify(result)) | |
} | |
if (this.isChatGptModel) { | |
reply = result.choices[0].message.content | |
} else { | |
reply = result.choices[0].text.replace(this.endToken, '') | |
} | |
} | |
// avoids some rendering issues when using the CLI app | |
if (this.options.debug) { | |
console.debug() | |
} | |
reply = reply.trim() | |
const replyMessage = { | |
id: uuidv4(), | |
parentMessageId: userMessage.id, | |
role: 'ChatGPT', | |
message: reply, | |
} | |
conversation.messages.push(replyMessage) | |
const returnData: any = { | |
response: replyMessage.message, | |
conversationId, | |
parentMessageId: replyMessage.parentMessageId, | |
messageId: replyMessage.id, | |
details: result || {}, | |
} | |
if (shouldGenerateTitle) { | |
conversation.title = await this.generateTitle(userMessage, replyMessage) | |
returnData.title = conversation.title | |
} | |
await this.conversationsCache.set(conversationId, conversation) | |
if (this.options.returnConversation) { | |
returnData.conversation = conversation | |
} | |
return returnData | |
} | |
async buildPrompt( | |
messages: MyChatMessage[], | |
parentMessageId: string, | |
{ isChatGptModel = false, promptPrefix = null } | |
) { | |
const orderedMessages = ChatGPTClient.getMessagesForConversation( | |
messages, | |
parentMessageId | |
) | |
promptPrefix = (promptPrefix || this.options.promptPrefix || '').trim() | |
if (promptPrefix) { | |
// If the prompt prefix doesn't end with the end token, add it. | |
if (!promptPrefix.endsWith(`${this.endToken}`)) { | |
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n` | |
} | |
promptPrefix = `${this.startToken}Instructions:\n${promptPrefix}` | |
} else { | |
const currentDateString = new Date().toLocaleDateString('en-us', { | |
year: 'numeric', | |
month: 'long', | |
day: 'numeric', | |
}) | |
promptPrefix = `${this.startToken}Instructions:\nYou are ChatGPT, a large language model trained by OpenAI. Respond conversationally.\nCurrent date: ${currentDateString}${this.endToken}\n\n` | |
} | |
const promptSuffix = `${this.startToken}${this.chatGptLabel}:\n` // Prompt ChatGPT to respond. | |
const instructionsPayload = { | |
role: 'system', | |
name: 'instructions', | |
content: promptPrefix, | |
} | |
const messagePayload = { | |
role: 'system', | |
content: promptSuffix, | |
} | |
let currentTokenCount: number | |
if (isChatGptModel) { | |
currentTokenCount = | |
this.getTokenCountForMessage(instructionsPayload) + | |
this.getTokenCountForMessage(messagePayload) | |
} else { | |
currentTokenCount = this.getTokenCount(`${promptPrefix}${promptSuffix}`) | |
} | |
let promptBody = '' | |
const maxTokenCount = this.maxPromptTokens | |
const context = [] | |
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count. | |
// Do this within a recursive async function so that it doesn't block the event loop for too long. | |
const buildPromptBody = async () => { | |
if (currentTokenCount < maxTokenCount && orderedMessages.length > 0) { | |
const message = orderedMessages.pop() | |
const roleLabel = | |
message.role === 'User' ? this.userLabel : this.chatGptLabel | |
const messageString = `${this.startToken}${roleLabel}:\n${message.message}${this.endToken}\n` | |
let newPromptBody: string | |
if (promptBody || isChatGptModel) { | |
newPromptBody = `${messageString}${promptBody}` | |
} else { | |
// Always insert prompt prefix before the last user message, if not gpt-3.5-turbo. | |
// This makes the AI obey the prompt instructions better, which is important for custom instructions. | |
// After a bunch of testing, it doesn't seem to cause the AI any confusion, even if you ask it things | |
// like "what's the last thing I wrote?". | |
newPromptBody = `${promptPrefix}${messageString}${promptBody}` | |
} | |
context.unshift(message) | |
const tokenCountForMessage = this.getTokenCount(messageString) | |
const newTokenCount = currentTokenCount + tokenCountForMessage | |
if (newTokenCount > maxTokenCount) { | |
if (promptBody) { | |
// This message would put us over the token limit, so don't add it. | |
return false | |
} | |
// This is the first message, so we can't add it. Just throw an error. | |
throw new Error( | |
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.` | |
) | |
} | |
promptBody = newPromptBody | |
currentTokenCount = newTokenCount | |
// wait for next tick to avoid blocking the event loop | |
if (typeof setImmediate !== 'undefined') { | |
await new Promise((resolve) => setImmediate(resolve)) | |
} | |
return buildPromptBody() | |
} | |
return true | |
} | |
await buildPromptBody() | |
const prompt = `${promptBody}${promptSuffix}` | |
if (isChatGptModel) { | |
messagePayload.content = prompt | |
// Add 2 tokens for metadata after all messages have been counted. | |
currentTokenCount += 2 | |
} | |
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response. | |
this.modelOptions.max_tokens = Math.min( | |
this.maxContextTokens - currentTokenCount, | |
this.maxResponseTokens | |
) | |
if (isChatGptModel) { | |
return { prompt: [instructionsPayload, messagePayload], context } | |
} | |
return { prompt, context } | |
} | |
getTokenCount(text) { | |
return this.gptEncoder.encode(text, 'all').length | |
} | |
/** | |
* Algorithm adapted from "6. Counting tokens for chat API calls" of | |
* https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb | |
* | |
* An additional 2 tokens need to be added for metadata after all messages have been counted. | |
* | |
* @param {*} message | |
*/ | |
getTokenCountForMessage(message) { | |
let tokensPerMessage | |
let nameAdjustment | |
if (this.modelOptions.model.startsWith('gpt-4')) { | |
tokensPerMessage = 3 | |
nameAdjustment = 1 | |
} else { | |
tokensPerMessage = 4 | |
nameAdjustment = -1 | |
} | |
// Map each property of the message to the number of tokens it contains | |
const propertyTokenCounts = Object.entries(message).map(([key, value]) => { | |
// Count the number of tokens in the property value | |
const numTokens = this.getTokenCount(value) | |
// Adjust by `nameAdjustment` tokens if the property key is 'name' | |
const adjustment = key === 'name' ? nameAdjustment : 0 | |
return numTokens + adjustment | |
}) | |
// Sum the number of tokens in all properties and add `tokensPerMessage` for metadata | |
return propertyTokenCounts.reduce((a, b) => a + b, tokensPerMessage) | |
} | |
/** | |
* Iterate through messages, building an array based on the parentMessageId. | |
* Each message has an id and a parentMessageId. The parentMessageId is the id of the message that this message is a reply to. | |
* @param messages | |
* @param parentMessageId | |
* @returns {*[]} An array containing the messages in the order they should be displayed, starting with the root message. | |
*/ | |
static getMessagesForConversation(messages, parentMessageId) { | |
const orderedMessages = [] | |
let currentMessageId = parentMessageId | |
while (currentMessageId) { | |
// eslint-disable-next-line no-loop-func | |
const message = messages.find((m) => m.id === currentMessageId) | |
if (!message) { | |
break | |
} | |
orderedMessages.unshift(message) | |
currentMessageId = message.parentMessageId | |
} | |
return orderedMessages | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment