Bootstrap knowledge of LLMs ASAP. With a bias/focus to GPT.
Avoid being a link dump. Try to provide only valuable well tuned information.
Neural network links before starting with transformers.
# train_grpo.py | |
# | |
# See https://github.com/willccbb/verifiers for ongoing developments | |
# | |
import re | |
import torch | |
from datasets import load_dataset, Dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import LoraConfig | |
from trl import GRPOConfig, GRPOTrainer |
import Foundation | |
struct Handler { | |
let handleJSON: (Data) throws -> Void | |
init<T: Decodable>(handler: @escaping (T) -> Void) { | |
handleJSON = { data in | |
let object = try JSONDecoder().decode(T.self, from: data) | |
handler(object) | |
} |
import M2Crypto | |
def main(): | |
manifest_path = 'path/to/manifest.json' | |
signature_path = 'path/to/signature' | |
# to convert .cer to .pem | |
# openssl x509 -inform der -in certificate.cer -out certificate.pem | |
# to combine certificate and key | |
# cat PushChatCert.pem PushChatKey.pem > ck.pem |
// | |
// CollectionViewDataSource.swift | |
// Khan Academy | |
// | |
// Created by Andy Matuschak on 10/14/14. | |
// Copyright (c) 2014 Khan Academy. All rights reserved. | |
// | |
import UIKit |
echo "{"`find . -type f -exec shasum {} + | sed 's/\.\///g' | awk '{print "\t\"" $2 "\" : \"" $1 "\","}' | grep -v -E "(\.DS_Store|manifest\.json)"`"}" | sed 's/\,}/}/g' | python -mjson.tool > manifest.json |