-
-
Save gordthompson/be1799bd68a12be58c880bb9c92158bc to your computer and use it in GitHub Desktop.
# Copyright 2024 Gordon D. Thompson, [email protected] | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# version 1.7 - 2024-06-21 | |
import uuid | |
import pandas as pd | |
import sqlalchemy as sa | |
def df_upsert(data_frame, table_name, engine, schema=None, match_columns=None, | |
chunksize=None, dtype=None, skip_inserts=False, skip_updates=False): | |
""" | |
Perform an "upsert" on a SQL Server table from a DataFrame. | |
Constructs a T-SQL MERGE statement, uploads the DataFrame to a | |
temporary table, and then executes the MERGE. | |
Parameters | |
---------- | |
data_frame : pandas.DataFrame | |
The DataFrame to be upserted. | |
table_name : str | |
The name of the target table. | |
engine : sqlalchemy.engine.Engine | |
The SQLAlchemy Engine to use. | |
schema : str, optional | |
The name of the schema containing the target table. | |
match_columns : list of str, optional | |
A list of the column name(s) on which to match. If omitted, the | |
primary key columns of the target table will be used. | |
chunksize: int, optional | |
Specify chunk size for .to_sql(). See the pandas docs for details. | |
dtype : dict, optional | |
Specify column types for .to_sql(). See the pandas docs for details. | |
skip_inserts : bool, optional | |
Skip inserting unmatched rows. (Default: False) | |
skip_updates : bool, optional | |
Skip updating matched rows. (Default: False) | |
""" | |
if skip_inserts and skip_updates: | |
raise ValueError("skip_inserts and skip_updates cannot both be True") | |
temp_table_name = "##" + str(uuid.uuid4()).replace("-", "_") | |
table_spec = "" | |
if schema: | |
table_spec += "[" + schema.replace("]", "]]") + "]." | |
table_spec += "[" + table_name.replace("]", "]]") + "]" | |
df_columns = list(data_frame.columns) | |
if not match_columns: | |
insp = sa.inspect(engine) | |
match_columns = insp.get_pk_constraint(table_name, schema=schema)[ | |
"constrained_columns" | |
] | |
columns_to_update = [col for col in df_columns if col not in match_columns] | |
stmt = f"MERGE {table_spec} WITH (HOLDLOCK) AS main\n" | |
stmt += f"USING (SELECT {', '.join([f'[{col}]' for col in df_columns])} FROM {temp_table_name}) AS temp\n" | |
join_condition = " AND ".join( | |
[f"main.[{col}] = temp.[{col}]" for col in match_columns] | |
) | |
stmt += f"ON ({join_condition})" | |
if not skip_updates: | |
stmt += "\nWHEN MATCHED THEN\n" | |
update_list = ", ".join( | |
[f"[{col}] = temp.[{col}]" for col in columns_to_update] | |
) | |
stmt += f" UPDATE SET {update_list}" | |
if not skip_inserts: | |
stmt += "\nWHEN NOT MATCHED THEN\n" | |
insert_cols_str = ", ".join([f"[{col}]" for col in df_columns]) | |
insert_vals_str = ", ".join([f"temp.[{col}]" for col in df_columns]) | |
stmt += f" INSERT ({insert_cols_str}) VALUES ({insert_vals_str})" | |
stmt += ";" | |
with engine.begin() as conn: | |
data_frame.to_sql(temp_table_name, conn, index=False, chunksize=chunksize, dtype=dtype) | |
conn.exec_driver_sql(stmt) | |
conn.exec_driver_sql(f"DROP TABLE IF EXISTS {temp_table_name}") | |
if __name__ == "__main__": | |
# Usage example adapted from | |
# https://stackoverflow.com/a/62388768/2144390 | |
engine = sa.create_engine( | |
"mssql+pyodbc://scott:tiger^[email protected]/test" | |
"?driver=ODBC+Driver+17+for+SQL+Server", | |
fast_executemany=True, | |
) | |
# create example environment | |
with engine.begin() as conn: | |
conn.exec_driver_sql("DROP TABLE IF EXISTS main_table") | |
conn.exec_driver_sql( | |
"CREATE TABLE main_table (id int primary key, txt nvarchar(50), status nvarchar(50))" | |
) | |
conn.exec_driver_sql( | |
"INSERT INTO main_table (id, txt, status) VALUES (1, N'row 1 old text', N'original')" | |
) | |
# [(1, 'row 1 old text', 'original')] | |
# DataFrame to upsert | |
df = pd.DataFrame( | |
[(2, "new row 2 text", "upserted"), (1, "row 1 new text", "upserted")], | |
columns=["id", "txt", "status"], | |
) | |
df_upsert(df, "main_table", engine) | |
"""The MERGE statement generated for this example: | |
MERGE [main_table] WITH (HOLDLOCK) AS main | |
USING (SELECT [id], [txt], [status] FROM ##955db388_01c5_4e79_a5d1_3e8cfadf400b) AS temp | |
ON (main.[id] = temp.[id]) | |
WHEN MATCHED THEN | |
UPDATE SET [txt] = temp.[txt], [status] = temp.[status] | |
WHEN NOT MATCHED THEN | |
INSERT ([id], [txt], [status]) VALUES (temp.[id], temp.[txt], temp.[status]); | |
""" | |
# check results | |
with engine.begin() as conn: | |
print( | |
conn.exec_driver_sql("SELECT * FROM main_table").all() | |
) | |
# [(1, 'row 1 new text', 'upserted'), (2, 'new row 2 text', 'upserted')] |
Really appreciate your help here. I'm new to Python so still getting my arms around it.
This is exactly what I was looking for! Any info on licensing?
@TheFoon - I have added license text.
Really great script thanks. I'm trying to merge into a table with some varbinary columns and I am getting this error
I've tried wrapping the columns with a CONVERT in the SELECT query but that doesn't seem to help. Here is the table definition
CREATE TABLE [dbo].[LEAS](
[BLDGID] [nchar](6) NOT NULL,
[LEASID] [nchar](6) NOT NULL,
[SUITID] [nchar](5) NOT NULL,
[OCCPNAME] [nchar](75) NULL,
[DBA] [nchar](75) NULL,
[CONTNAME] [nchar](30) NULL,
[PHONENO1] [nchar](15) NULL,
[PHONENO2] [nchar](15) NULL,
[NAME] [nchar](50) NULL,
[ADDRESS] [nchar](50) NULL,
[ADDRESS2] [nchar](50) NULL,
[CITY] [nchar](35) NULL,
[STATE] [nchar](3) NULL,
[ZIPCODE] [nchar](9) NULL,
[ATTENT] [nchar](30) NULL,
[TENTID] [nchar](5) NULL,
[TTYPID] [nchar](5) NULL,
[OCCPSTAT] [nchar](1) NOT NULL,
[EXECDATE] [datetime] NULL,
[RENTSTRT] [datetime] NULL,
[OCCUPNCY] [datetime] NULL,
[BEGINDATE] [datetime] NULL,
[EXPIR] [datetime] NULL,
[VACATE] [datetime] NULL,
[CANCDATE] [datetime] NULL,
[PRTSTAT] [nchar](1) NOT NULL,
[PERMITCR] [nchar](1) NOT NULL,
[LEASSTOP] [nchar](1) NOT NULL,
[DAYDUE] [smallint] NULL,
[LATECALC] [nchar](1) NULL,
[LATEFLAT] [money] NULL,
[LATERATE] [float] NULL,
[INTRATE] [float] NULL,
[MAXLATE] [nchar](1) NOT NULL,
[NUMLATE] [smallint] NULL,
[NCDEP] [money] NULL,
[MGMTRATE] [float] NULL,
[DELQOPT] [nchar](1) NULL,
[DELQDAY] [smallint] NULL,
[INTSTART] [datetime] NULL,
[LASTINT] [datetime] NULL,
[LASTDATE] [datetime] NULL,
[USERID] [nchar](20) NULL,
[ADDRID] [nchar](6) NULL,
[EXCL5YR] [nchar](1) NOT NULL,
[BANKID] [nchar](6) NULL,
[VENDID] [nchar](6) NULL,
[ALLOWAMT] [money] NULL,
[PROFILE] [nchar](2) NULL,
[COUNTY] [nchar](20) NULL,
[STORECAT] [nchar](1) NULL,
[TENTCAT] [nchar](5) NULL,
[STYPID] [nchar](5) NULL,
[YEAREND] [nchar](6) NULL,
[PRVYREND] [nchar](6) NULL,
[PRVY2END] [nchar](6) NULL,
[SALESTRT] [datetime] NULL,
[SALEEND] [datetime] NULL,
[REPFREQ] [nchar](1) NOT NULL,
[REQRPTY] [nchar](3) NULL,
[REQADJ] [nchar](1) NOT NULL,
[PCTGBASE] [nchar](1) NOT NULL,
[ESTLEVEL] [nchar](3) NULL,
[ESTMETH] [nchar](3) NULL,
[LASTEST] [nchar](3) NULL,
[NATURAL] [nchar](1) NOT NULL,
[NINCCAT1] [nchar](5) NULL,
[NINCCAT2] [nchar](5) NULL,
[NINCCAT3] [nchar](5) NULL,
[RPTYPRI1] [nchar](3) NULL,
[RPTYPRI2] [nchar](3) NULL,
[RPTYPRI3] [nchar](3) NULL,
[RPTYPRI4] [nchar](3) NULL,
[RPTYPRI5] [nchar](3) NULL,
[NUMCOPY] [smallint] NULL,
[SICCODE] [nchar](6) NULL,
[CHAINID] [nchar](6) NULL,
[MOCCPID] [nchar](8) NULL,
[GENERATION] [smallint] NOT NULL,
[GENCODE] [nchar](3) NULL,
[ADDLSPACE] [nchar](1) NOT NULL,
[STOPBILLDATE] [datetime] NULL,
[LITIGATION] [nchar](1) NULL,
[RENEWAL] [nchar](1) NULL,
[PRIMARYCHGS] [nchar](1) NULL,
[INSEXP] [datetime] NULL,
[TICOST] [money] NULL,
[COMMCOST] [money] NULL,
[DRAWER] [nchar](35) NULL,
[FININST] [nchar](20) NULL,
[BRANCH] [nchar](20) NULL,
[HEADLEAS] [nchar](1) NULL,
[PRORATE] [nchar](1) NULL,
[CURRCODE] [nchar](3) NULL,
[CROSSCURYN] [nchar](1) NULL,
[LTFEEDAYS] [smallint] NULL,
[LTFCAMT] [money] NULL,
[EXPSTOP] [money] NULL,
[DEPARTMENT] [nchar](5) NULL,
[ACCOUNTID] [nchar](12) NULL,
[NAICSCODE] [nchar](8) NULL,
[ABATRAN] [varbinary](max) NULL,
[ABABANK] [varbinary](max) NULL,
[BANKACCTNAME] [nchar](30) NULL,
[EMAILBILL] [nchar](150) NULL,
[PREPAYTAXTERM] [smallint] NULL,
[TAXEXEMPT] [nchar](1) NULL,
[AUTOEXCEPTION] [nchar](1) NULL,
[FASBEXCEPTION] [nchar](1) NULL,
[FASBSTART] [datetime] NULL,
[FASBSTOP] [datetime] NULL,
[PERCENTRENT] [nchar](1) NULL,
[ORIGEXPIR] [datetime] NULL,
[AFTERFACT] [nchar](1) NULL,
[COTENANT] [nchar](1) NULL,
[ACCPHONE] [nchar](14) NULL,
[ACCFAX] [nchar](14) NULL,
[COUNTRY] [nchar](30) NULL,
[ACCTEMAIL] [nchar](125) NULL,
[CONTTITLE] [nchar](10) NULL,
[CONTINITIALS] [nchar](10) NULL,
[ATTENTTITLE] [nchar](10) NULL,
[ATTENTINITIALS] [nchar](10) NULL,
[BILLADDR1] [nchar](50) NULL,
[BILLADDR2] [nchar](50) NULL,
[BILLADDR3] [nchar](50) NULL,
[BILLCITY] [nchar](30) NULL,
[BILLCOUNTY] [nchar](20) NULL,
[BILLZIPCODE] [nchar](15) NULL,
[BILLCOUNTRY] [nchar](20) NULL,
[EMAIL] [nchar](150) NULL,
[ADDRESS3] [nchar](50) NULL,
[REGION] [nchar](10) NULL,
[CNTYCODE] [nchar](5) NULL,
[VATREGNO] [nchar](20) NULL,
[DRINCCAT] [nchar](5) NULL,
[HRCASHTYPE] [nchar](2) NULL,
[HRDESC] [nchar](30) NULL,
[HRACCTNUM] [nchar](9) NULL,
[NOTICEDATE] [datetime] NULL,
[REVPAT] [nchar](2) NULL,
[NEXTREV] [datetime] NULL,
[REMPERIOD] [float] NULL,
[TIMEESS] [nchar](1) NULL,
[REVUPWARD] [nchar](1) NULL,
[COLLECTIONID] [bigint] NULL,
[CLS_OLDREF] [nchar](20) NULL,
[CLS_POREF] [nchar](50) NULL,
[CLS_PAYABLE] [nchar](50) NULL,
[CLS_ERV] [money] NULL,
[CLS_NER] [money] NULL,
[SUBREGION] [nchar](10) NULL,
[CLS_CONTRACTEDRENT] [numeric](12, 2) NULL,
[CLS_INVNOTE] [ntext] NULL,
[DEMISEDESC] [nchar](70) NULL,
[SHDEMISE] [nchar](25) NULL,
[TENANCYTYPE] [nchar](10) NULL,
[GUARNAME] [nchar](50) NULL,
[TENANCYSTAT] [nchar](2) NULL,
[SEARCHNAME] [nchar](50) NULL,
[SUPCHASELET] [nchar](1) NULL,
[SCCHARGEFR] [datetime] NULL,
[BREACHTEXT] [ntext] NULL,
[SCNET] [nchar](1) NULL,
[IDE_RES] [nchar](1) NULL,
[LEASLLSTOP] [nchar](1) NULL,
[MANDATE_NO] [nchar](35) NULL,
[MANDATE_DATE] [datetime] NULL,
[SCCHARGETO] [datetime] NULL,
[IPL_PAYMETHOD] [nchar](12) NULL,
[IPL_OVERSEAS] [nchar](1) NULL,
[EFTSCHEMEID] [nvarchar](50) NULL,
[BANKNAME] [nchar](80) NULL,
[BANKCURRCODE] [nchar](3) NULL,
[IIT_PARTIVA] [nchar](30) NULL,
[IIT_CODEFIS] [nchar](50) NULL,
[IIT_DD] [nchar](1) NULL,
[PAYMETH] [nchar](10) NULL,
[LRTANND] [datetime] NULL,
[LRTAPP] [nchar](1) NULL,
[LRTPERC] [numeric](18, 2) NULL,
[IIT_CODERID] [nchar](16) NULL,
[IIT_STAMP] [nchar](1) NULL,
[IFR_RTBASE1] [nchar](5) NULL,
[IFR_RTBASE2] [nchar](5) NULL,
[IFR_RTPROV] [nchar](5) NULL,
[IFR_RTBASE3] [nchar](5) NULL,
[UKREVTYPE] [nchar](10) NULL,
[PORTSTOP] [nchar](1) NULL,
[ENTITYSTOP] [nchar](1) NULL,
[SCOCCTYPE] [nchar](1) NULL,
[SCROUNDING] [nchar](1) NULL,
[SCBREF] [nchar](30) NULL,
[FEDID] [varbinary](max) NULL,
[FEDIDTYPE] [nchar](10) NULL,
[COMPANYGRPID] [int] NULL,
[RATING1] [nchar](25) NULL,
[RATING2] [nchar](25) NULL,
[RATING3] [nchar](25) NULL,
[FLAG1] [nchar](1) NULL,
[FLAG2] [nchar](1) NULL,
[FLAG3] [nchar](1) NULL,
[FLAG4] [nchar](1) NULL,
[FLAG5] [nchar](1) NULL,
[DEFAULTFROM] [int] NOT NULL,
[TENANTRSKRTNG] [nchar](10) NULL,
[SCALLINC] [nchar](1) NULL,
[CLS_DEALSUMMID] [nvarchar](50) NULL,
[IBAN] [varbinary](max) NULL,
[BANKACCT] [varbinary](max) NULL,
[SWIFT] [varbinary](max) NULL,
[BANKCODE] [varbinary](max) NULL,
[SORTCODE] [varbinary](max) NULL,
[AGRFORLEASE] [datetime] NULL,
[AFLYESNO] [nchar](1) NULL,
[CLS_COREGNUM] [nchar](20) NULL,
[CLS_SAFENO] [nchar](12) NULL,
[ActiveSegment] [bit] NOT NULL,
[SegmentAccountFilter] [bit] NOT NULL,
[SegmentCustomFilter] [bit] NULL,
[SourceLink] [nvarchar](500) NULL,
[TENDERDATE] [datetime] NULL,
[STORENO] [nvarchar](50) NULL,
[SALESDUE] [smallint] NULL,
[SCWEIGHTCAP] [nchar](1) NULL,
[DD_STATUS] [nchar](2) NULL,
[DD_0NFILEDATE] [datetime] NULL,
[DD_0CFILEDATE] [datetime] NULL,
[DD_CANCEL] [nchar](10) NULL,
[DD_FILECODE] [nvarchar](50) NULL,
[DD_FINAL] [datetime] NULL,
[ARREARSTAT] [nvarchar](20) NULL,
[GUARANTEED] [nvarchar](20) NULL,
[DDFREQ] [nchar](5) NULL,
[CREATEDON] [datetime] NULL,
[PREVLEASID] [nchar](6) NULL,
[ORIGLEASID] [nchar](6) NULL,
[EXCLDLYSL] [nchar](1) NULL,
[EMEA_REVIEW_STATUS] [nchar](1) NULL
)
@pseudobacon - I have added a dtype=
argument to the function. You will need to specify all of the varbinary columns so they don't get mistaken for varchar, e.g.,
from sqlalchemy import VARBINARY
df_upsert(df, "LEAS", engine, dtype={"SWIFT": VARBINARY, "BANKCODE": VARBINARY})
@pseudobacon - Try doing
insp = sa.inspect(engine)
vbm_cols = [col["name"] for col in insp.get_columns("LEAS") if str(col["type"]).startswith("VARBINARY")]
print(vbm_cols)
to see if you've missed any.
@pseudobacon - Which line in mssql_df_upsert.py is failing: line 73, or line 74?
@pseudobacon - Aha, okay. If you are using fast_executemany=True
then try switching it off to see if the error goes away.
It goes away. But now the merge is so slow that after half an hour nothing has merged in. Would specifying the primary key columns help or would that make no difference? There are already keys on the table
Try this: Reinstate fast_executemany=True
and hack your copy of mssql_df_upsert.py, changing this …
with engine.begin() as conn:
data_frame.to_sql("#temp_table", conn, index=False, dtype=dtype)
conn.exec_driver_sql(stmt)
conn.exec_driver_sql("DROP TABLE IF EXISTS #temp_table")
… to this …
with engine.begin() as conn:
conn.exec_driver_sql(f"SELECT * INTO #temp_table FROM {table_spec} WHERE 1=0")
crsr = conn.connection.dbapi_connection.cursor()
insert_stmt = f"INSERT INTO #temp_table VALUES ({', '.join('?' * len(df_columns))})"
crsr.executemany(insert_stmt, list(data_frame.itertuples(index=False)))
conn.exec_driver_sql(stmt)
conn.exec_driver_sql("DROP TABLE IF EXISTS #temp_table")
(The code assumes that the DataFrame column order exactly matches the table's.)
Have you already done some mods to the mssql_df_upsert.py file? Your line 80 is my line 76. (The [lack of] indentation also looks strange, but maybe they're just trimming leading whitespace.)
@pseudobacon - Revert the above change (with
block) to use .to_sql()
again, then change the name of the temporary table from #temp_table
to ##temp_table
(in 4 places).
… or use the updated code I just posted.
Huzzah it works! Thank you very much
I've also got a scenario where I am presumably running out of memory when trying to merge in 500k+ records:
For this particular data frame there are some columns which are completely NULL. From SQL's point of view its not necessary to supply NULL as a value to merge in, would it be possible to add a parameter to exclude columns where the entire column is NULL? This would reduce the number of columns needed for comparison in the MERGE and improve performance
@pseudobacon - I added chunksize
to try and help with memory consumption.
@npnigro - Okay, thanks. It appears that pandas creates a TIMESTAMP column in the temp table if the datetime value is timezone-aware. Another workaround would be to convert it to a naive datetime value:
That keeps the date and time values the same, but drops the offset (which can't be stored in a datetime/datetime2 column anyway).