Created
November 13, 2016 23:36
-
-
Save gvtulder/e78b4e71e58826350e7afa19845db935 to your computer and use it in GitHub Desktop.
Multiple in-place optimizations
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import time | |
from collections import OrderedDict | |
import numpy as np | |
import theano | |
import theano.tensor as T | |
import theano.gpuarray | |
from theano.gpuarray.basic_ops import as_gpuarray_variable, gpu_contiguous | |
import theano.gpuarray.tests.config | |
class DummyOp(theano.Op): | |
__props__ = ('inplace_harmful', 'inplace_harmless') | |
def __init__(self, inplace_harmful=False, inplace_harmless=False): | |
self.inplace_harmful = inplace_harmful | |
self.inplace_harmless = inplace_harmless | |
self.destroy_map = {} | |
if self.inplace_harmful: | |
self.destroy_map[0] = [0] | |
if self.inplace_harmless: | |
self.destroy_map[1] = [1] | |
def make_node(self, x, y): | |
x = as_gpuarray_variable(x, None) | |
y = as_gpuarray_variable(y, None) | |
return theano.Apply(self, [x, y], [x.type(), x.type()]) | |
def connection_pattern(self, node): | |
return [[True, True], [True, True]] | |
def grad(self, inputs, output_grads): | |
x, y = inputs | |
dz, d_ = output_grads | |
z, _ = self.make_node(*inputs).outputs | |
return DummyOpGrad()(x, z, dz) | |
def perform(self, node, inputs, outputs): | |
if node.op.inplace_harmful: | |
outputs[0][0] = inputs[0] | |
else: | |
outputs[0][0] = inputs[0].copy() | |
outputs[0][0][0] = 10 | |
outputs[1][0] = inputs[1].copy() | |
class DummyOpGrad(theano.Op): | |
def make_node(self, x, z, dz): | |
x = as_gpuarray_variable(x, None) | |
z = as_gpuarray_variable(z, None) | |
dz = as_gpuarray_variable(dz, None) | |
return theano.Apply(self, [x, z, dz], [x.type(), x.type()]) | |
def perform(self, node, inputs, outputs): | |
x, z, dz = [np.asarray(a) for a in inputs] | |
outputs[0][0] = inputs[0].copy() | |
outputs[1][0] = inputs[1].copy() | |
outputs[0][0][0] = 100 + x[0] + z[0] + dz[0] | |
@theano.gpuarray.opt.register_inplace('dummy_inplace_opt') | |
@theano.gof.local_optimizer([DummyOp], inplace=True) | |
def local_dummy_inplace_2(node): | |
if isinstance(node.op, DummyOp) and not node.op.inplace_harmful: | |
print('Attempting to replace with DummyOp inplace_harmful=True') | |
return DummyOp(inplace_harmful=True, inplace_harmless=node.op.inplace_harmless)(*node.inputs) | |
return False | |
@theano.gpuarray.opt.register_inplace('dummy_inplace_opt') | |
@theano.gof.local_optimizer([DummyOp], inplace=True) | |
def local_dummy_inplace_1(node): | |
if isinstance(node.op, DummyOp) and not node.op.inplace_harmless: | |
print('Attempting to replace with DummyOp inplace_harmless=True') | |
return DummyOp(inplace_harmful=node.op.inplace_harmful, inplace_harmless=True)(*node.inputs) | |
return False | |
def dummy_op(x, y): | |
x = gpu_contiguous(x) | |
y = gpu_contiguous(y) | |
return DummyOp()(x, y) | |
x = T.vector(name='x') | |
y = T.vector(name='y') | |
dz = T.vector(name='dz') | |
z, _ = dummy_op(x, y) | |
grad = T.grad(None, wrt=x, known_grads={z: dz}) | |
print('Before optimization and compilation') | |
theano.printing.debugprint([z, grad]) | |
print('') | |
mode_with_gpu = theano.gpuarray.tests.config.mode_with_gpu | |
mode_with_inplace = mode_with_gpu.including('dummy_inplace_opt') | |
mode_without_inplace = mode_with_gpu.excluding('dummy_inplace_opt') | |
for enable_inplace in (True, False): | |
print('Optimizations enabled?', enable_inplace) | |
if enable_inplace: | |
f = theano.function([x, y, dz], [z, grad], mode=mode_with_inplace) | |
else: | |
f = theano.function([x, y, dz], [z, grad], mode=mode_without_inplace) | |
print('After optimization and compilation') | |
theano.printing.debugprint(f) | |
print('') | |
print('Toposort order') | |
for i, n in enumerate(f.maker.fgraph.toposort()): | |
print('%2d: %s' % (i, str(n))) | |
print('') | |
res_z, res_grad = f([1], [2], [3]) | |
print('input x = 1, dz = 3') | |
print('expected z = 10') | |
print('expected grad = 100 + x + z + dz = 100 + 1 + 10 + 3 = 114') | |
print('output z = %d' % np.array(res_z)[0]) | |
print('output grad = %d' % np.array(res_grad)[0]) | |
print('') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Before optimization and compilation | |
DummyOp{inplace_harmful=False, inplace_harmless=False}.0 [id A] '' | |
|GpuContiguous [id B] '' | |
| |GpuFromHost<None> [id C] '' | |
| |x [id D] | |
|GpuContiguous [id E] '' | |
|GpuFromHost<None> [id F] '' | |
|y [id G] | |
HostFromGpu(gpuarray) [id H] '' | |
|<__main__.DummyOpGrad object at 0x7fd6669252d0>.0 [id I] '' | |
|GpuContiguous [id B] '' | |
|DummyOp{inplace_harmful=False, inplace_harmless=False}.0 [id J] '' | |
| |GpuContiguous [id B] '' | |
| |GpuContiguous [id E] '' | |
|GpuFromHost<None> [id K] '' | |
|dz [id L] | |
Optimizations enabled? True | |
Attempting to replace with DummyOp inplace_harmless=True | |
Attempting to replace with DummyOp inplace_harmful=True | |
After optimization and compilation | |
DummyOp{inplace_harmful=True, inplace_harmless=True}.0 [id A] '' 5 | |
|GpuContiguous [id B] '' 4 | |
| |GpuFromHost<None> [id C] '' 2 | |
| |x [id D] | |
|GpuContiguous [id E] '' 3 | |
|GpuFromHost<None> [id F] '' 1 | |
|y [id G] | |
HostFromGpu(gpuarray) [id H] '' 7 | |
|<__main__.DummyOpGrad object at 0x7fd6669252d0>.0 [id I] '' 6 | |
|GpuContiguous [id B] '' 4 | |
|DummyOp{inplace_harmful=True, inplace_harmless=True}.0 [id A] '' 5 | |
|GpuFromHost<None> [id J] '' 0 | |
|dz [id K] | |
Toposort order | |
0: GpuFromHost<None>(dz) | |
1: GpuFromHost<None>(y) | |
2: GpuFromHost<None>(x) | |
3: GpuContiguous(GpuFromHost<None>.0) | |
4: GpuContiguous(GpuFromHost<None>.0) | |
5: DummyOp{inplace_harmful=True, inplace_harmless=True}(GpuContiguous.0, GpuContiguous.0) | |
6: <__main__.DummyOpGrad object at 0x7fd6669252d0>(GpuContiguous.0, DummyOp{inplace_harmful=True, inplace_harmless=True}.0, GpuFromHost<None>.0) | |
7: HostFromGpu(gpuarray)(<__main__.DummyOpGrad object at 0x7fd6669252d0>.0) | |
input x = 1, dz = 3 | |
expected z = 10 | |
expected grad = 100 + x + z + dz = 100 + 1 + 10 + 3 = 114 | |
output z = 10 | |
output grad = 123 | |
Optimizations enabled? False | |
After optimization and compilation | |
DummyOp{inplace_harmful=False, inplace_harmless=False}.0 [id A] '' 5 | |
|GpuContiguous [id B] '' 4 | |
| |GpuFromHost<None> [id C] '' 2 | |
| |x [id D] | |
|GpuContiguous [id E] '' 3 | |
|GpuFromHost<None> [id F] '' 1 | |
|y [id G] | |
HostFromGpu(gpuarray) [id H] '' 7 | |
|<__main__.DummyOpGrad object at 0x7fd6669252d0>.0 [id I] '' 6 | |
|GpuContiguous [id B] '' 4 | |
|DummyOp{inplace_harmful=False, inplace_harmless=False}.0 [id A] '' 5 | |
|GpuFromHost<None> [id J] '' 0 | |
|dz [id K] | |
Toposort order | |
0: GpuFromHost<None>(dz) | |
1: GpuFromHost<None>(y) | |
2: GpuFromHost<None>(x) | |
3: GpuContiguous(GpuFromHost<None>.0) | |
4: GpuContiguous(GpuFromHost<None>.0) | |
5: DummyOp{inplace_harmful=False, inplace_harmless=False}(GpuContiguous.0, GpuContiguous.0) | |
6: <__main__.DummyOpGrad object at 0x7fd6669252d0>(GpuContiguous.0, DummyOp{inplace_harmful=False, inplace_harmless=False}.0, GpuFromHost<None>.0) | |
7: HostFromGpu(gpuarray)(<__main__.DummyOpGrad object at 0x7fd6669252d0>.0) | |
input x = 1, dz = 3 | |
expected z = 10 | |
expected grad = 100 + x + z + dz = 100 + 1 + 10 + 3 = 114 | |
output z = 10 | |
output grad = 114 | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment