Last active
June 1, 2022 10:15
-
-
Save haipnh/e865f38b17bd21f212777212066c5a15 to your computer and use it in GitHub Desktop.
Verify CUDA-enabled system for ML/DL framework
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
# This gist provides several test cases to verify a host machine using NVIDIA graphics card if it's ready for tensorflow and pytorch. | |
### TC#1: Verify hardware information | |
# Expectation: The OS shows hardware bare information | |
lspci | grep -i nvidia | |
sudo lshw -C display | |
### TC#2: Verify nvidia-driver-X | |
# Prerequisite: Install the driver: | |
# sudo apt-get update & sudo apt-get install -y nvidia-driver-470/510 | |
# sudo reboot now | |
# Expectation: nvidia-smi shows detailed information: GPU model, GPU loads, VRAM usage,... | |
nvidia-smi | |
### TC#3: Verify nvidia-docker-toolkit installation | |
# Prerequisite: Installed Docker - https://docs.docker.com/engine/install/ubuntu/ | |
# Expectation: nvidia-smi shows detailed information: GPU model, GPU loads, VRAM usage,... | |
docker run --gpus all --rm nvidia/cuda:11.0-cudnn8-runtime-ubuntu18.04 nvidia-smi | |
### TC#4: Verify tensorflow-gpu | |
# Expectation: A random matrix will be generated by tensorflow using GPU | |
docker run --gpus all -it --rm tensorflow/tensorflow:latest-gpu \ | |
python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))" | |
### TC#5: Verify pytorch-gpu | |
# Expectation: Pytorch can detect GPU's info | |
docker run --gpus all -it --rm pytorch/pytorch:1.9.0-cuda10.2-cudnn7-devel \ | |
python -c "import torch; print(torch.version.cuda); print(torch.cuda.is_available()); print(torch.cuda.device_count()); print(torch.cuda.get_device_name(0))" | |
docker run --gpus all -it --rm pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel \ | |
python -c "import torch; print(torch.version.cuda); print(torch.cuda.is_available()); print(torch.cuda.device_count()); print(torch.cuda.get_device_name(0))" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment