Created
December 10, 2020 02:27
-
-
Save hamletbatista/e7714bd59357a83b36b1174ecf00bb03 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import streamlit as st | |
from ludwig.api import LudwigModel | |
import pandas as pd | |
st.cache(show_spinner=False) | |
def load_model(): | |
#Update with the path to the Ludwig trained model | |
model = LudwigModel.load("results/experiment_run_1/model/") | |
return model | |
model = load_model() | |
st.header("Automated Title Tag Optimization Using Deep Learning\nby @hamletbatista") | |
st.text("This demo uses a Google T5 model trained for Title Tag Optimization") | |
add_text_sidebar = st.sidebar.title("Menu") | |
add_text_sidebar = st.sidebar.text("🐍🔥 DISCLAIMER\n You DON'T need to learn Python\n to be a great SEO.") | |
filename = st.text_input(label="Provide CSV filename with titles and keywords to optimize") | |
import pandas as pd | |
if len(filename) > 0 and filename.find(".csv") > 0: | |
test_df = pd.read_csv(filename)#("test.csv") | |
predictions = model.predict(test_df) | |
test_df = test_df.rename(columns={"Simplified_Title": "Original_Title"}) | |
#st.text('Original Titles and Keywords:') | |
#st.write(test_df) | |
#st.table(test_df) | |
st.text('Optimized Titles:') | |
pred_df = predictions[0] | |
#Clean up titles | |
pred_df["Title"] = pred_df["Title_predictions"].apply(lambda x: " ".join(x)) | |
final_df = test_df.join(pred_df)[["Original_Title", "Keyword", "Title"]].rename(columns={"Title": "Optimized_Title"}) | |
#st.write(final_df) | |
st.table(final_df) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment