Last active
March 12, 2019 11:03
-
-
Save hanasuru/26bca4e310580cc16e437db665427383 to your computer and use it in GitHub Desktop.
linear-regression
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LinearRegression | |
from sklearn import metrics | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import numpy as np | |
dataset = pd.read_csv('machine.csv') | |
X = dataset[['125', '256', '6000','256.1','16','128']] | |
Y = dataset['198'] | |
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0) | |
regressor= LinearRegression() | |
regressor.fit(X_train, y_train) | |
coeff_df = pd.DataFrame(regressor.coef_, X.columns, columns=['Coefficient']) | |
y_pred = regressor.predict(X_test) | |
df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}) | |
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) | |
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) | |
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment