Last active
March 7, 2017 14:06
-
-
Save hayatoy/fa742c7ca2f32cdb33b4a43a5a2c10a8 to your computer and use it in GitHub Desktop.
Training Multiple Models of TensorFlow using Dataflow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import apache_beam as beam | |
import apache_beam.transforms.window as window | |
options = beam.utils.pipeline_options.PipelineOptions() | |
google_cloud_options = options.view_as(beam.utils.pipeline_options.GoogleCloudOptions) | |
google_cloud_options.project = '{PROJECTID}' | |
google_cloud_options.job_name = 'tensorflow-gs' | |
google_cloud_options.staging_location = 'gs://{BUCKET_NAME}/binaries' | |
google_cloud_options.temp_location = 'gs://{BUCKET_NAME}/temp' | |
worker_options = options.view_as(beam.utils.pipeline_options.WorkerOptions) | |
worker_options.max_num_workers = 6 | |
worker_options.num_workers = 6 | |
worker_options.disk_size_gb = 20 | |
# worker_options.machine_type = 'n1-standard-16' | |
# options.view_as(beam.utils.pipeline_options.StandardOptions).runner = 'DirectRunner' | |
options.view_as(beam.utils.pipeline_options.StandardOptions).runner = 'DataflowRunner' | |
p = beam.Pipeline(options=options) | |
import itertools | |
param_grid = {'hidden_units': [[10, 20, 10], [20, 40, 20], [100, 200, 100]], | |
'dropout': [0.1, 0.2, 0.5, 0.8], | |
'steps': [20000, 50000, 100000]} | |
def dict_product(param): | |
return (dict(itertools.izip(param, x)) for x in itertools.product(*param.itervalues())) | |
params = list(dict_product(param_grid)) | |
def train(param): | |
import uuid | |
import json | |
import tensorflow as tf | |
from sklearn import cross_validation | |
model_id = str(uuid.uuid4()) | |
# Load iris dataset | |
iris = tf.contrib.learn.datasets.base.load_iris() | |
train_x, test_x, train_y, test_y = cross_validation.train_test_split( | |
iris.data, iris.target, test_size=0.2, random_state=0 | |
) | |
# https://www.tensorflow.org/get_started/tflearn | |
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)] | |
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns, | |
hidden_units=param['hidden_units'], | |
dropout=param['dropout'], | |
n_classes=3, | |
model_dir='gs://{BUCKET_NAME}/models/%s'% model_id) | |
classifier.fit(x=train_x, | |
y=train_y, | |
steps=param['steps'], | |
batch_size=50) | |
result = classifier.evaluate(x=test_x, y=test_y) | |
ret = {'accuracy': float(result['accuracy']), | |
'loss': float(result['loss']), | |
'model_id': model_id, | |
'param': json.dumps(param)} | |
return ret | |
(p | 'init' >> beam.Create(params) | |
| 'train' >> beam.Map(train) | |
| 'output' >> beam.Write(beam.io.BigQuerySink('project:dataset.table', | |
schema="accuracy:FLOAT, loss:FLOAT, model_id:STRING, param:STRING", | |
write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND, | |
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED)) | |
) | |
p.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment