Last active
July 23, 2024 01:29
-
-
Save hbisneto/2f7a15eb03dbbded3b1b8f627752b711 to your computer and use it in GitHub Desktop.
Donut Animation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
screen_size = 40 | |
theta_spacing = 0.07 | |
phi_spacing = 0.02 | |
illumination = np.fromiter(".,-~:;=!*#$@", dtype="<U1") | |
A = 1 | |
B = 1 | |
R1 = 1 | |
R2 = 2 | |
K2 = 5 | |
K1 = screen_size * K2 * 3 / (8 * (R1 + R2)) | |
def render_frame(A: float, B: float) -> np.ndarray: | |
""" | |
Returns a frame of the spinning 3D donut. | |
Based on the pseudocode from: https://www.a1k0n.net/2011/07/20/donut-math.html | |
""" | |
cos_A = np.cos(A) | |
sin_A = np.sin(A) | |
cos_B = np.cos(B) | |
sin_B = np.sin(B) | |
output = np.full((screen_size, screen_size), " ") # (40, 40) | |
zbuffer = np.zeros((screen_size, screen_size)) # (40, 40) | |
cos_phi = np.cos(phi := np.arange(0, 2 * np.pi, phi_spacing)) # (315,) | |
sin_phi = np.sin(phi) # (315,) | |
cos_theta = np.cos(theta := np.arange(0, 2 * np.pi, theta_spacing)) # (90,) | |
sin_theta = np.sin(theta) # (90,) | |
circle_x = R2 + R1 * cos_theta # (90,) | |
circle_y = R1 * sin_theta # (90,) | |
x = (np.outer(cos_B * cos_phi + sin_A * sin_B * sin_phi, circle_x) - circle_y * cos_A * sin_B).T # (90, 315) | |
y = (np.outer(sin_B * cos_phi - sin_A * cos_B * sin_phi, circle_x) + circle_y * cos_A * cos_B).T # (90, 315) | |
z = ((K2 + cos_A * np.outer(sin_phi, circle_x)) + circle_y * sin_A).T # (90, 315) | |
ooz = np.reciprocal(z) # Calculates 1/z | |
xp = (screen_size / 2 + K1 * ooz * x).astype(int) # (90, 315) | |
yp = (screen_size / 2 - K1 * ooz * y).astype(int) # (90, 315) | |
L1 = (((np.outer(cos_phi, cos_theta) * sin_B) - cos_A * np.outer(sin_phi, cos_theta)) - sin_A * sin_theta) # (315, 90) | |
L2 = cos_B * (cos_A * sin_theta - np.outer(sin_phi, cos_theta * sin_A)) # (315, 90) | |
L = np.around(((L1 + L2) * 8)).astype(int).T # (90, 315) | |
mask_L = L >= 0 # (90, 315) | |
chars = illumination[L] # (90, 315) | |
for i in range(90): | |
mask = mask_L[i] & (ooz[i] > zbuffer[xp[i], yp[i]]) # (315,) | |
zbuffer[xp[i], yp[i]] = np.where(mask, ooz[i], zbuffer[xp[i], yp[i]]) | |
output[xp[i], yp[i]] = np.where(mask, chars[i], output[xp[i], yp[i]]) | |
return output | |
def pprint(array: np.ndarray) -> None: | |
"""Pretty print the frame.""" | |
print(*[" ".join(row) for row in array], sep="\n") | |
if __name__ == "__main__": | |
for _ in range(screen_size * screen_size): | |
A += theta_spacing | |
B += phi_spacing | |
print("\x1b[H") | |
pprint(render_frame(A, B)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment