Skip to content

Instantly share code, notes, and snippets.

@hedgefair
Forked from Smerity/cartpole.py
Created October 2, 2016 14:35
Show Gist options
  • Save hedgefair/6b4591ade68376a5f7673c3ed7025767 to your computer and use it in GitHub Desktop.
Save hedgefair/6b4591ade68376a5f7673c3ed7025767 to your computer and use it in GitHub Desktop.
Script for Cartpole using policy gradient via Chainer, two layer MLP, dropout, and rejection sampling of historical memories
''' Script for Cartpole using policy gradient via Chainer, two layer MLP, dropout, and rejection sampling of historical memories '''
import gym
import numpy as np
import chainer
from chainer import optimizers
from chainer import ChainList, Variable
import chainer.functions as F
import chainer.links as L
env = gym.make('CartPole-v0')
env.monitor.start('./cartpole-experiment')
print('Action space:', env.action_space)
print('Observation space:', env.observation_space)
INPUT = 4
HIDDEN = 32
MEMORY_STORE = 16
REWARD_DECAY = 0.99
EPSILON_RANDOM = 0.01
MINIMUM_UPDATE_SIZE = 2
SGD_LR = 0.8
DROPOUT = 0.5
class PolicyNetwork(ChainList):
def __init__(self, input_size=4, hidden_size=32):
super(PolicyNetwork, self).__init__(
L.Linear(input_size, hidden_size, nobias=True),
L.Linear(hidden_size, 1, nobias=True),
)
def __call__(self, x, train=True, dropout=0.5):
h = x
h = F.dropout(self[0](h), train=train, ratio=dropout)
h = self[1](F.tanh(h))
return F.sigmoid(h)
model = PolicyNetwork(input_size=INPUT, hidden_size=HIDDEN)
optimizer = optimizers.SGD(lr=SGD_LR)
optimizer.setup(model)
env.reset()
episodes = []
reward_history = []
for iter in range(10000):
episode = []
total_reward = 0
state = env.reset()
for t in range(201):
env.render()
raw_action = model(np.array([state], dtype=np.float32), train=False)
action = 1 if np.random.random() < raw_action.data else 0
if np.random.random() > 1 - EPSILON_RANDOM:
action = env.action_space.sample()
new_state, reward, done, info = env.step(action)
episode.append((state, action, reward))
state = new_state
total_reward += reward
if done:
break
episodes.append((total_reward, episode))
reward_history.append(total_reward)
if len(episodes) > MINIMUM_UPDATE_SIZE:
gradW = [[], []]
for _, episode in episodes:
R = [r for idx, (s, a, r) in enumerate(episode)]
accR = [sum(r * REWARD_DECAY ** i for i, r in enumerate(R[idx:])) for idx, (s, a, r) in enumerate(episode)]
pred_actions = [model(np.array([s], dtype=np.float32), train=True, dropout=DROPOUT) for (s, a, r) in episode]
losses = [(pa - a) ** 2 for pa, (s, a, r) in zip(pred_actions, episode)]
for loss, r in zip(losses, accR):
model.zerograds()
loss.backward()
gradW[0].append(r * model[0].W.grad)
gradW[1].append(r * model[1].W.grad)
for idx, gradW in enumerate(gradW):
model[idx].W.grad = np.mean(gradW, axis=0, dtype=np.float32)
optimizer.update()
maxR = np.max([r for (r, ep) in episodes])
episodes = [(r, ep) for (r, ep) in episodes if maxR * np.random.random() < r]
np.random.shuffle(episodes)
episodes = episodes[:MEMORY_STORE]
print('Episode {} finished after {} timesteps (avg for last 100 - {})'.format(iter, t, np.mean(reward_history[-100:])))
env.monitor.close()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment