-
-
Save hedgefair/6b4591ade68376a5f7673c3ed7025767 to your computer and use it in GitHub Desktop.
Script for Cartpole using policy gradient via Chainer, two layer MLP, dropout, and rejection sampling of historical memories
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' Script for Cartpole using policy gradient via Chainer, two layer MLP, dropout, and rejection sampling of historical memories ''' | |
import gym | |
import numpy as np | |
import chainer | |
from chainer import optimizers | |
from chainer import ChainList, Variable | |
import chainer.functions as F | |
import chainer.links as L | |
env = gym.make('CartPole-v0') | |
env.monitor.start('./cartpole-experiment') | |
print('Action space:', env.action_space) | |
print('Observation space:', env.observation_space) | |
INPUT = 4 | |
HIDDEN = 32 | |
MEMORY_STORE = 16 | |
REWARD_DECAY = 0.99 | |
EPSILON_RANDOM = 0.01 | |
MINIMUM_UPDATE_SIZE = 2 | |
SGD_LR = 0.8 | |
DROPOUT = 0.5 | |
class PolicyNetwork(ChainList): | |
def __init__(self, input_size=4, hidden_size=32): | |
super(PolicyNetwork, self).__init__( | |
L.Linear(input_size, hidden_size, nobias=True), | |
L.Linear(hidden_size, 1, nobias=True), | |
) | |
def __call__(self, x, train=True, dropout=0.5): | |
h = x | |
h = F.dropout(self[0](h), train=train, ratio=dropout) | |
h = self[1](F.tanh(h)) | |
return F.sigmoid(h) | |
model = PolicyNetwork(input_size=INPUT, hidden_size=HIDDEN) | |
optimizer = optimizers.SGD(lr=SGD_LR) | |
optimizer.setup(model) | |
env.reset() | |
episodes = [] | |
reward_history = [] | |
for iter in range(10000): | |
episode = [] | |
total_reward = 0 | |
state = env.reset() | |
for t in range(201): | |
env.render() | |
raw_action = model(np.array([state], dtype=np.float32), train=False) | |
action = 1 if np.random.random() < raw_action.data else 0 | |
if np.random.random() > 1 - EPSILON_RANDOM: | |
action = env.action_space.sample() | |
new_state, reward, done, info = env.step(action) | |
episode.append((state, action, reward)) | |
state = new_state | |
total_reward += reward | |
if done: | |
break | |
episodes.append((total_reward, episode)) | |
reward_history.append(total_reward) | |
if len(episodes) > MINIMUM_UPDATE_SIZE: | |
gradW = [[], []] | |
for _, episode in episodes: | |
R = [r for idx, (s, a, r) in enumerate(episode)] | |
accR = [sum(r * REWARD_DECAY ** i for i, r in enumerate(R[idx:])) for idx, (s, a, r) in enumerate(episode)] | |
pred_actions = [model(np.array([s], dtype=np.float32), train=True, dropout=DROPOUT) for (s, a, r) in episode] | |
losses = [(pa - a) ** 2 for pa, (s, a, r) in zip(pred_actions, episode)] | |
for loss, r in zip(losses, accR): | |
model.zerograds() | |
loss.backward() | |
gradW[0].append(r * model[0].W.grad) | |
gradW[1].append(r * model[1].W.grad) | |
for idx, gradW in enumerate(gradW): | |
model[idx].W.grad = np.mean(gradW, axis=0, dtype=np.float32) | |
optimizer.update() | |
maxR = np.max([r for (r, ep) in episodes]) | |
episodes = [(r, ep) for (r, ep) in episodes if maxR * np.random.random() < r] | |
np.random.shuffle(episodes) | |
episodes = episodes[:MEMORY_STORE] | |
print('Episode {} finished after {} timesteps (avg for last 100 - {})'.format(iter, t, np.mean(reward_history[-100:]))) | |
env.monitor.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment