Skip to content

Instantly share code, notes, and snippets.

View hernandohhoyos's full-sized avatar

Hernando Hurtado Hoyos hernandohhoyos

  • I currently work at LF Technologies
  • Colombia
  • 03:00 - 5h behind
View GitHub Profile
from confluent_kafka import TopicPartition, Consumer, Producer
from confluent_kafka.admin import AdminClient
from confluent_kafka.cimpl import NewTopic
message = {"topic": "my-topic", "payload": "mensajito"}
config = {
"producer_config": {
"bootstrap.servers": "broker:port,broker:port",
"security.protocol": "SSL",
},
@hernandohhoyos
hernandohhoyos / Android_commands.sh
Last active August 7, 2024 18:59
Comandos útiles para trabajar con Android
# Para las keystore que piden Android
keytool -genkey -v -keystore task.keystore -keyalg RSA -keysize 2048 -validity 10000 -alias tasks -storepass android -keypass android
keytool -genkey -v -keystore task.jks -keyalg RSA -keysize 2048 -validity 10000 -alias tasks
# Para virtualizar Android
avdmanager create avd -n MyAVD -k "system-images;android-30;google_apis;x86_64" -d pixel
# Instalar apks en el emulador
adb install H:/Game/proyectos/lista_de_tareas/tasks.apk
@hernandohhoyos
hernandohhoyos / godot_sqlite.gd
Created August 6, 2024 22:55
Base de datos con SQLite en Godot 4.2.2
extends Control
# Referencias a los nodos ItemList y Button
@onready var item_list = $ItemList
@onready var add_button = $Button
var db : SQLite # usando el addon godot-sqlite
# Called when the node enters the scene tree for the first time.
func _ready():
@hernandohhoyos
hernandohhoyos / calculate_neigbor_vector.py
Created August 1, 2024 18:02
Calcular la posición de un segundo punto en un espacio 2D dados un punto inicial, una distancia, un eje, una altura y un ángulo
import math
import numpy as np
def calculate_neigbor_vector(a, distance, degrees, height=0):
a = np.array(a)
radians = math.radians(degrees)
x2 = a[0] + distance * math.cos(radians)
y2 = a[1] + distance * math.sin(radians)
z2 = a[2] + distance * math.sin(radians) * height
return np.array((x2, y2, z2))
@hernandohhoyos
hernandohhoyos / create_mesh.py
Created August 1, 2024 18:00
Crear una malla en Blender
import bpy
import bmesh
import numpy as np
def create_mesh():
# Elimina todos los objetos en la escena
bpy.ops.object.select_all(action='DESELECT')
bpy.ops.object.select_by_type(type='MESH')
bpy.ops.object.delete()
@hernandohhoyos
hernandohhoyos / calculate_mid_distance.py
Created August 1, 2024 17:52
Calcular el punto medio M de la línea AB
import numpy as np
a = np.array((0,0,0))
b = np.array((1,0,0))
M = ((a[0] + b[0]) / 2, (a[1] + b[1]) / 2, (a[2] + b[2]) / 2)
@hernandohhoyos
hernandohhoyos / calculate_triangle_vectors.py
Created August 1, 2024 17:50
Calcular triángulo en un plano xy con la posibilidad de agregarle altura en z
import numpy
def calculate_triangle_vectors(a, b, distance, height=0):
"""
Calcula un punto con los parámetros dados para formar un triángulo.
:param a: list. Ie (0,0,0)
:param b: list. Ie (0,0,0)
:param distance: float Ie, 1.0
:param height: int. Ie, 1 or -1
"""
@hernandohhoyos
hernandohhoyos / infinite_loop.py
Created August 1, 2024 16:38
Lista con Iteración Infinita
infinite_loop_list = [1,2,3,4,5]
for i in range(len(infinite_loop_list)):
print(
(
infinite_loop_list[i % len(infinite_loop_list)] ,
infinite_loop_list[(i+1) % len(infinite_loop_list)],
infinite_loop_list[(i+2) % len(infinite_loop_list)]
)
)
@hernandohhoyos
hernandohhoyos / LambdaJsonSchema.js
Created July 26, 2024 20:53
imlementación que permite llamar funciones pasando el propio objeto como contexto
let schema = {
type: Number,
min: 1900,
max: () => new Date().getFullYear(),
message: () => {
if(typeof this.max === 'function'){
return `El valor debe estar entre ${this.min} y ${this.max()}`
}
return `El valor debe estar entre ${this.min} y ${this.max}`
}
@hernandohhoyos
hernandohhoyos / csv_generator.py
Created August 4, 2022 17:29
Generate CSV using pandas and numpy
import numpy as np
import pandas as pd
N = 10000
df = pd.DataFrame(
np.random.randint(999, 999999, size=(N, 7)), columns=list("ABCDEFG")
)
df["H"] = np.random.rand(N)
df["I"] = pd.util.testing.rands_array(10, N)