Created
January 27, 2023 23:56
-
-
Save honglu2875/c94f01c22db9be2c0a72cd54d05b7f24 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
import time | |
bias = torch.tril(torch.ones((2048, 2048), dtype=torch.uint8, device='cuda')).view( | |
1, 1, 2048, 2048 | |
) | |
def _attn( | |
query, | |
key, | |
value, | |
attention_mask=None, | |
head_mask=None, | |
original=True, | |
): | |
# compute causal mask from causal mask buffer | |
query_length, key_length = query.size(-2), key.size(-2) | |
causal_mask = bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool) | |
# Keep the attention weights computation in fp32 to avoid overflow issues | |
query = query.to(torch.float32) | |
key = key.to(torch.float32) | |
attn_weights = torch.matmul(query, key.transpose(-1, -2)) | |
mask_value = torch.finfo(attn_weights.dtype).min | |
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. | |
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` | |
if original: | |
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) | |
attn_weights = torch.where(causal_mask, attn_weights, mask_value) | |
attn_weights = attn_weights / 16 | |
if attention_mask is not None: | |
# Apply the attention mask | |
attn_weights = attn_weights + attention_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
attn_weights = attn_weights.to(value.dtype) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attn_weights = attn_weights * head_mask | |
attn_output = torch.matmul(attn_weights, value) | |
return attn_output, attn_weights | |
key = torch.rand((8,1024,1024), dtype=torch.float32, device='cuda') | |
query = torch.rand((8,1024,1024), dtype=torch.float32, device='cuda') | |
value = torch.rand((8,1024,1024), dtype=torch.float32, device='cuda') | |
start = time.perf_counter() | |
for _ in range(100): | |
_attn(key, query, value, original=True) | |
print(time.perf_counter() - start) | |
start = time.perf_counter() | |
for _ in range(100): | |
_attn(key, query, value, original=False) | |
print(time.perf_counter() - start) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment