Created
April 10, 2015 07:42
-
-
Save hustbill/3a3cea93ddc86b1d1dd6 to your computer and use it in GitHub Desktop.
find Median of Two Sorted Arrays
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
public class Solution { | |
/* | |
The solution use the find Kth element in the sorted two arrays. We compare the ith element in A and jth element in B, where i+j = k-1. | |
A[i]> A[j], both right part of A and left part of B should be discarded. | |
A[i]< A[j], both left part of A and right part of B should be discarded. | |
*/ | |
public double findMedianSortedArrays(int A[], int B[]) { | |
int m = A.length; | |
int n = B.length; | |
if((m+n)%2 ==1) | |
return (double)findKth(A, B, (m+n)/2, 0, m-1, 0, n-1 ); | |
else | |
return (findKth(A, B, (m+n)/2, 0, m-1, 0, n-1) + findKth(A, B, (m+n)/2 -1, 0, m-1, 0,n-1))*0.5; | |
} | |
public int findKth(int A[], int B[], int k, int startA, int endA, int startB, int endB) { | |
int lenA = endA - startA+1 ; | |
int lenB = endB - startB+1; | |
if(0 == lenA) | |
return B[startB+k]; | |
if(0 == lenB) | |
return A[startA+k]; | |
if(0 == k) | |
return Math.min( A[startA], B[startB]); | |
int midA = lenA*k /(lenA + lenB); | |
int midB = k -midA - 1; | |
midA +=startA; | |
midB +=startB; | |
if(A[midA] > B[midB]) { | |
k -= (midB -startB +1); | |
endA = midA; | |
startB = midB+1; | |
} | |
else { | |
k-= (midA-startA +1); | |
startA = midA +1; | |
endB = midB; | |
} | |
return findKth(A, B, k, startA, endA, startB, endB); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment