-
-
Save iamaaditya/11267359 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# from: http://www.4dsolutions.net/cgi-bin/py2html.cgi?script=/ocn/python/primes.py | |
""" | |
primes.py -- Oregon Curriculum Network (OCN) | |
Feb 1, 2001 changed global var primes to _primes, added relative primes test | |
Dec 17, 2000 appended probable prime generating methods, plus invmod | |
Dec 16, 2000 revised to use pow(), removed methods not in text, added sieve() | |
Dec 12, 2000 small improvements to erastosthenes() | |
Dec 10, 2000 added Euler test | |
Oct 3, 2000 modified fermat test | |
Jun 5, 2000 rewrite of erastosthenes method | |
May 19, 2000 added more documentation | |
May 18, 2000 substituted Euclid's algorithm for gcd | |
Apr 7, 2000 changed name of union function to 'cover' for consistency | |
Apr 6, 2000 added union, intersection -- changed code of lcm, gcd | |
Apr 5, 2000 added euler, base, expo functions (renamed old euler to phi) | |
Mar 31, 2000 added sieve, renaming/modifying divtrial | |
Mar 30, 2000 added LCM, GCD, euler, fermat | |
Mar 28, 2000 added lcm | |
Feb 18, 2000 improved efficiency of isprime(), made getfactors recursive | |
""" | |
import time, random, operator | |
_primes = [2] # global list of primes | |
def iseven(n): | |
"""Return true if n is even.""" | |
return n%2==0 | |
def isodd(n): | |
"""Return true if n is odd.""" | |
return not iseven(n) | |
def get2max(maxnb): | |
"""Return list of primes up to maxnb.""" | |
nbprimes = 0 | |
if maxnb < 2: return [] | |
# start with highest prime so far | |
i = _primes[-1] | |
# and add... | |
i = i + 1 + isodd(i)*1 # next odd number | |
if i <= maxnb: # if more prime checking needed... | |
while i<=maxnb: | |
if divtrial(i): _primes.append(i) # append to list if verdict true | |
i=i+2 # next odd number | |
nbprimes = len(_primes) | |
else: | |
for i in _primes: # return primes =< maxnb, even if more on file | |
if i<=maxnb: nbprimes = nbprimes + 1 | |
else: break # quit testing once maxnb exceeded | |
return _primes[:nbprimes] | |
def get2nb(nbprimes): | |
"""Return list of primes with nbprimes members.""" | |
if nbprimes>len(_primes): | |
# start with highest prime so far | |
i = _primes[-1] | |
# and add... | |
i = i + 1 + isodd(i)*1 | |
while len(_primes)<nbprimes: | |
if divtrial(i): _primes.append(i) | |
i=i+2 | |
return _primes[:nbprimes] | |
def isprime(n): | |
""" | |
Divide by primes until n proves composite or prime. | |
Brute force algorithm, will wimp out for humongous n | |
return 0 if n is divisible | |
return 1 if n is prime""" | |
nbprimes = 0 | |
rtnval = 1 | |
if n == 2: return 1 | |
if n < 2 or iseven(n): return 0 | |
maxnb = n ** 0.5 # 2nd root of n | |
# if n < largest prime on file, check for n in list | |
if n <= _primes[-1]: rtnval = (n in _primes) | |
# if primes up to root(n) on file, run divtrial (a prime test) | |
elif maxnb <= _primes[-1]: rtnval = divtrial(n) | |
else: | |
rtnval = divtrial(n) # check divisibility by primes so far | |
if rtnval==1: # now, if still tentatively prime... | |
# start with highest prime so far | |
i = _primes[-1] | |
# and add... | |
i = i + 1 + isodd(i)*1 # next odd number | |
while i <= maxnb: | |
if divtrial(i): # test of primehood | |
_primes.append(i) # append to list if prime | |
if not n%i: # if n divisible by latest prime | |
rtnval = 0 # then we're done | |
break | |
i=i+2 # next odd number | |
return rtnval | |
def iscomposite(n): | |
""" | |
Return true if n is composite. | |
Uses isprime""" | |
return not isprime(n) | |
def divtrial(n): | |
""" | |
Trial by division check whether a number is prime.""" | |
verdict = 1 # default is "yes, add to list" | |
cutoff = n**0.5 # 2nd root of n | |
for i in _primes: | |
if not n%i: # if no remainder | |
verdict = 0 # then we _don't_ want to add | |
break | |
if i >= cutoff: # stop trying to divide by | |
break # lower primes when p**2 > n | |
return verdict | |
def erastosthenes(n): | |
""" | |
Suggestions from Ka-Ping Yee, John Posner and Tim Peters""" | |
sieve = [0, 0, 1] + [1, 0] * (n/2) # [0 0 1 1 0 1 0...] | |
prime = 3 # initial odd prime | |
while prime**2 <= n: | |
for i in range(prime**2, n+1, prime*2): | |
sieve[i] = 0 # step through sieve by prime*2 | |
prime += 1 + sieve[prime+1:].index(1) # get next prime | |
# filter includes corresponding integers where sieve = 1 | |
return filter(lambda i, sieve=sieve: sieve[i], range(n+1)) | |
def sieve(n): | |
""" | |
In-place sieving of odd numbers, adapted from code | |
by Mike Fletcher | |
""" | |
candidates = range(3, n+1, 2) # start with odds | |
for p in candidates: | |
if p: # skip zeros | |
if p*p>n: break # done | |
for q in xrange(p*p, n+1, 2*p): # sieving | |
candidates[(q-3)/2] = 0 | |
return [2] + filter(None, candidates) # [2] + remaining nonzeros | |
def base(n,b): | |
""" | |
Accepts n in base 10, returns list corresponding to n base b.""" | |
output = [] | |
while n>=1: | |
n,r = divmod(n,b) # returns quotient, remainder | |
output.append(r) | |
output.reverse() | |
return output | |
def fermat(n,b=2): | |
"""Test for primality based on Fermat's Little Theorem. | |
returns 0 (condition false) if n is composite, -1 if | |
base is not relatively prime | |
""" | |
if gcd(n,b)>1: return -1 | |
else: return pow(b,n-1,n)==1 | |
def jacobi(a,n): | |
"""Return jacobi number. | |
source: http://www.utm.edu/research/primes/glossary/JacobiSymbol.html""" | |
j = 1 | |
while not a == 0: | |
while iseven(a): | |
a = a/2 | |
if (n%8 == 3 or n%8 == 5): j = -j | |
x=a; a=n; n=x # exchange places | |
if (a%4 == 3 and n%4 == 3): j = -j | |
a = a%n | |
if n == 1: return j | |
else: return 0 | |
def euler(n,b=2): | |
"""Euler probable prime if (b**(n-1)/2)%n = jacobi(a,n). | |
(stronger than simple fermat test)""" | |
term = pow(b,(n-1)/2.0,n) | |
jac = jacobi(b,n) | |
if jac == -1: return term == n-1 | |
else: return term == jac | |
def getfactors(n): | |
"""Return list containing prime factors of a number.""" | |
if isprime(n) or n==1: return [n] | |
else: | |
for i in _primes: | |
if not n%i: # if goes evenly | |
n = n/i | |
return [i] + getfactors(n) | |
def gcd(a,b): | |
"""Return greatest common divisor using Euclid's Algorithm.""" | |
while b: | |
a, b = b, a % b | |
return a | |
def lcm(a,b): | |
""" | |
Return lowest common multiple.""" | |
return (a*b)/gcd(a,b) | |
def GCD(terms): | |
"Return gcd of a list of numbers." | |
return reduce(lambda a,b: gcd(a,b), terms) | |
def LCM(terms): | |
"Return lcm of a list of numbers." | |
return reduce(lambda a,b: lcm(a,b), terms) | |
def phi(n): | |
"""Return number of integers < n relatively prime to n.""" | |
product = n | |
used = [] | |
for i in getfactors(n): | |
if i not in used: # use only unique prime factors | |
used.append(i) | |
product = product * (1 - 1.0/i) | |
return int(product) | |
def relprimes(n,b=1): | |
""" | |
List the remainders after dividing n by each | |
n-relative prime * some relative prime b | |
""" | |
relprimes = [] | |
for i in range(1,n): | |
if gcd(i,n)==1: relprimes.append(i) | |
print " n-rp's: %s" % (relprimes) | |
relprimes = map(operator.mul,[b]*len(relprimes),relprimes) | |
newremainders = map(operator.mod,relprimes,[n]*len(relprimes)) | |
print "b * n-rp's mod n: %s" % newremainders | |
def testeuler(a,n): | |
"""Test Euler's Theorem""" | |
a = long(a) | |
if gcd(a,n)>1: | |
print "(a,n) not relative primes" | |
else: | |
print "Result: %s" % pow(a,phi(n),n) | |
def goldbach(n): | |
"""Return pair of primes such that p1 + p2 = n.""" | |
rtnval = [] | |
_primes = get2max(n) | |
if isodd(n) and n >= 5: | |
rtnval = [3] # 3 is a term | |
n = n-3 # 3 + goldbach(lower even) | |
if n==2: rtnval.append(2) # catch 5 | |
else: | |
if n<=3: rtnval = [0,0] # quit if n too small | |
for i in range(len(_primes)): | |
# quit if we've found the answer | |
if len(rtnval) >= 2: break | |
# work back from highest prime < n | |
testprime = _primes[-(i+1)] | |
for j in _primes: | |
# j works from start of list | |
if j + testprime == n: | |
rtnval.append(j) | |
rtnval.append(testprime) # answer! | |
break | |
if j + testprime > n: | |
break # ready for next testprime | |
return rtnval | |
""" | |
The functions below have to do with encryption, and RSA in | |
particular, which uses large probable _primes. More discussion | |
at the Oregon Curriculum Network website is at | |
http://www.inetarena.com/~pdx4d/ocn/clubhouse.html | |
""" | |
def bighex(n): | |
hexdigits = list('0123456789ABCDEF') | |
hexstring = random.choice(hexdigits[1:]) | |
for i in range(n): | |
hexstring += random.choice(hexdigits) | |
return eval('0x'+hexstring+'L') | |
def bigdec(n): | |
decdigits = list('0123456789') | |
decstring = random.choice(decdigits[1:]) | |
for i in range(n): | |
decstring += random.choice(decdigits) | |
return long(decstring) | |
def bigppr(digits=100): | |
""" | |
Randomly generate a probable prime with a given | |
number of decimal digits | |
""" | |
start = time.clock() | |
print "Working..." | |
candidate = bigdec(digits) # or use bighex | |
if candidate&1==0: | |
candidate += 1 | |
prob = 0 | |
while 1: | |
prob=pptest(candidate) | |
if prob>0: break | |
else: candidate += 2 | |
print "Percent chance of being prime: %r" % (prob*100) | |
print "Elapsed time: %s seconds" % (time.clock()-start) | |
return candidate | |
def pptest(n): | |
""" | |
Simple implementation of Miller-Rabin test for | |
determining probable primehood. | |
""" | |
bases = [random.randrange(2,50000) for x in range(90)] | |
# if any of the primes is a factor, we're done | |
if n<=1: return 0 | |
for b in bases: | |
if n%b==0: return 0 | |
tests,s = 0L,0 | |
m = n-1 | |
# turning (n-1) into (2**s) * m | |
while not m&1: # while m is even | |
m >>= 1 | |
s += 1 | |
for b in bases: | |
tests += 1 | |
isprob = algP(m,s,b,n) | |
if not isprob: break | |
if isprob: return (1-(1./(4**tests))) | |
else: return 0 | |
def algP(m,s,b,n): | |
""" | |
based on Algorithm P in Donald Knuth's 'Art of | |
Computer Programming' v.2 pg. 395 | |
""" | |
result = 0 | |
y = pow(b,m,n) | |
for j in range(s): | |
if (y==1 and j==0) or (y==n-1): | |
result = 1 | |
break | |
y = pow(y,2,n) | |
return result | |
def invmod(a,b): | |
""" | |
Return modular inverse using a version Euclid's Algorithm | |
Code by Andrew Kuchling in Python Journal: | |
http://www.pythonjournal.com/volume1/issue1/art-algorithms/ | |
-- in turn also based on Knuth, vol 2. | |
""" | |
a1, a2, a3 = 1L,0L,a | |
b1, b2, b3 = 0L,1L,b | |
while b3 != 0: | |
# The following division will drop decimals. | |
q = a3 / b3 | |
t = a1 - b1*q, a2 - b2*q, a3 - b3*q | |
a1, a2, a3 = b1, b2, b3 | |
b1, b2, b3 = t | |
while a2<0: a2 = a2 + a | |
return a2 | |
# code highlighted using py2html.py version 0.8 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment