Created
July 30, 2023 09:37
-
-
Save innat/8f289ca389d2e3c14d7d7908bc4a5c21 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras_core import layers | |
def ResBlockIdentity(filter, stride): | |
def apply(inputs): | |
skip = inputs | |
x = layers.Conv2D(filter, kernel_size=3, strides=stride, padding='same')(inputs) | |
x = layers.BatchNormalization()(x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D(filter, kernel_size=3, strides=stride, padding='same')(x) | |
x = layers.BatchNormalization()(x) | |
x = layers.Add()([x, skip]) | |
x = layers.Activation('relu')(x) | |
return x | |
return apply | |
def ResBlockConv(filter, stride): | |
def apply(inputs): | |
skip = inputs | |
x = layers.Conv2D(filter, kernel_size=3, strides=stride, padding='same')(inputs) | |
x = layers.BatchNormalization()(x) | |
x = layers.Activation('relu')(x) | |
x = layers.Conv2D(filter, kernel_size=3, strides=1, padding='same')(x) | |
x = layers.BatchNormalization()(x) | |
skip = layers.Conv2D(filter, kernel_size=1, strides=stride, padding='same')(skip) | |
skip = layers.BatchNormalization()(skip) | |
x = layers.Add()([x, skip]) | |
x = layers.Activation('relu')(x) | |
return x | |
return apply | |
def ResNet18Backbone(input_shape): | |
input_im = keras.Input(shape=input_shape) | |
x = layers.Conv2D(64, (3, 3), padding='same')(input_im) | |
x = layers.BatchNormalization()(x) | |
x = layers.Activation('relu')(x) | |
for i, kernel in enumerate([64, 128, 256, 512]): | |
x = ResBlockConv(filter=kernel, stride=2 if i else 1)(x) | |
x = ResBlockIdentity(filter=kernel, stride=1)(x) | |
model = keras.Model( | |
inputs=input_im, outputs=x, name='Resnet18' | |
) | |
return model | |
def get_model(): | |
model = keras.Sequential( | |
[ | |
keras.layers.RandomFlip(), | |
ResNet18Backbone(input_shape=(32, 32, 3)), | |
keras.layers.GlobalMaxPooling2D(), | |
keras.layers.Dense(10, activation="softmax", dtype="float32"), | |
] | |
) | |
resnet18 = get_model() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment