Created
November 1, 2019 05:20
-
-
Save isaacmg/26144ecbcb9fe173c2c013b8c2beefe3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class AttendDiagnose(nn.Module): | |
def __init__(self, number_measurements, filter_number): | |
super().__init__() | |
self.d_model = filter_number*number_measurements | |
self.embedding_conv = nn.Conv1d(number_measurements, filter_number*number_measurements, 1) | |
self.pe = PositionalEncoding(filter_number*number_measurements) | |
# embed_dim and attention_heads | |
self.masked_attn = nn.modules.activation.MultiheadAttention(filter_number*number_measurements, 8) | |
self.norm = nn.modules.normalization.LayerNorm(self.d_model) | |
self.final_layer = nn.Linear(self.d_model, 1) | |
def forward(self, X): | |
x = self.embedding_conv(X) | |
x= x.transpose(1,2) | |
x = self.pe(x) | |
x = self.masked_attn(x, x, x)[0] | |
x = self.norm(x) | |
x = self.final_layer(x) | |
print(x.shape) | |
def positional_encoding(X): | |
# TODO implement | |
pass |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment