Created
May 25, 2020 07:35
-
-
Save ito4303/d617695d8688cf83fe5277aba806e5c5 to your computer and use it in GitHub Desktop.
Using the beta_proportion distribution of Stan
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- | |
title: "R Notebook" | |
output: html_notebook | |
--- | |
```{r} | |
library(rstan) | |
options(mc.cores = parallel::detectCores()) | |
library(bayesplot) | |
``` | |
Data generation | |
```{r data} | |
inv_logit <- function(x) { | |
1 / (1 + exp(-x)) | |
} | |
set.seed(123) | |
N <- 100 | |
X <- runif(N, -1, 1) | |
mu <- inv_logit(-1 + 2 * X) | |
kappa <- 2 | |
alpha <- mu * kappa | |
beta <- (1 - mu) * kappa | |
Y <- rbeta(N, alpha, beta) | |
ggplot(data.frame(X = X, Y = Y)) + | |
geom_point(aes(X, Y)) | |
``` | |
Stan model | |
```{stan output.var=beta_prop} | |
data { | |
int<lower = 0> N; | |
vector[N] X; | |
vector<lower = 0, upper = 1>[N] Y; | |
} | |
parameters { | |
vector[2] beta; | |
real<lower = 0> kappa; | |
} | |
transformed parameters { | |
vector[N] mu = inv_logit(beta[1] + beta[2] * X); | |
} | |
model { | |
Y ~ beta_proportion(mu, kappa); | |
} | |
generated quantities { | |
vector[N] yrep; | |
for (n in 1:N) | |
yrep[n] = beta_proportion_rng(mu[n], kappa); | |
} | |
``` | |
Fit | |
```{r fit} | |
data <- list(N = N, X = X, Y = Y) | |
fit <- sampling(beta_prop, data = data, iter = 2000) | |
print(fit, pars = c("beta", "kappa")) | |
``` | |
Posterior predictive check | |
```{r ppc} | |
yrep <- extract(fit, pars = "yrep")[[1]] | |
ppc_dens_overlay(Y, yrep[sample(nrow(yrep), 100), ]) | |
``` | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment