Created
March 15, 2020 18:46
-
-
Save itsuwari/3a3d1d07f39d63b2e33bf52c5afedef9 to your computer and use it in GitHub Desktop.
Topsis in Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import warnings | |
class topsis: | |
a=None #Matrix | |
w=None #Weight matrix | |
r=None #Normalisation matrix | |
m=None #Number of rows | |
n=None #Number of columns | |
aw=[] #worst alternative | |
ab=[] #best alternative | |
diw=None | |
dib=None | |
siw=None | |
sib=None | |
#Return a numpy array with float items | |
def floater(self,a): | |
ax=[] | |
for i in a: | |
try: | |
ix=[] | |
for j in i: | |
ix.append(float(j)) | |
except: | |
ix=float(i) | |
pass | |
ax.append(ix) | |
return np.array(ax) | |
def __init__(self,a,w,j): | |
self.a=self.floater(a) | |
self.m=len(a) | |
self.n=len(a[0]) | |
self.w=self.floater(w) | |
print self.a | |
self.w=self.w/sum(self.w) | |
self.j=np.array(j) | |
#print self.a | |
#print self.w | |
#print self.j | |
#Step 2 | |
def step2(self): | |
self.r=self.a | |
for i in range(self.m): | |
nm=sum(self.a[i,:]**2)**0.5 | |
for j in range(self.n): | |
self.r[i,j]=self.a[i,j]/nm | |
#Step 3 | |
def step3(self): | |
self.t=self.r*self.w | |
#Step 4 | |
def step4(self): | |
for i in range(self.n): | |
if self.j[i]==1: | |
self.aw.append(min(self.t[:,i])) | |
self.ab.append(max(self.t[:,i])) | |
else: | |
self.aw.append(max(self.t[:,i])) | |
self.ab.append(min(self.t[:,i])) | |
#Step 5 | |
def step5(self): | |
self.diw=(self.t-self.aw)**2 | |
self.dib=(self.t-self.ab)**2 | |
#print 'lol' | |
#print self.diw | |
"""for j in range(self.n): | |
self.diw[:,j]=(self.diw[:,j]-self.aw[j])**2 | |
self.dib[:,j]=(self.dib[:,j]-self.ab[j])**2 | |
print self.diw""" | |
self.dw=[] | |
self.db=[] | |
for j in range(self.m): | |
self.dw.append(sum(self.diw[j,:])**0.5) | |
self.db.append(sum(self.dib[j,:])**0.5) | |
print self.dw | |
self.dw=np.array(self.dw) | |
self.db=np.array(self.db) | |
print self.dw | |
#print self.db | |
#Step 6 | |
def step6(self): | |
np.seterr(all='ignore') | |
self.siw=self.dw/(self.dw+self.db) | |
#print self.siw | |
x=0 | |
m=None | |
for i in range(self.m): | |
print self.siw[i] | |
if self.siw[i]>m or m==None: | |
m=self.siw[i] | |
x=i | |
print 'Choice',x+1,'is the best' | |
def calc(self): | |
self.step2() | |
self.step3() | |
self.step4() | |
self.step5() | |
self.step6() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment