Created
May 29, 2017 02:21
-
-
Save ityonemo/c74ebd8a968e5fc7826762bf6a442e6a to your computer and use it in GitHub Desktop.
trivial and possibly inefficient prime field implementation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#primefield.jl | |
type PrimeField{P} | |
intval::UInt64 | |
function PrimeField(n) | |
new(n % P) | |
end | |
end | |
Base.:+{P}(x::PrimeField{P}, y::PrimeField{P}) = PrimeField{P}(x.intval + y.intval) | |
Base.:+{P}(x::PrimeField{P}, y::Int64) = PrimeField{P}(x.intval + y) | |
Base.:+{P}(x::Int64, y::PrimeField{P}) = PrimeField{P}(x + y.intval) | |
Base.:-{P}(x::PrimeField{P}) = PrimeField{P}(P - x.intval) | |
Base.:-{P}(x::PrimeField{P}, y::PrimeField{P}) = PrimeField{P}(P + x.intval - y.intval) | |
Base.:-{P}(x::PrimeField{P}, y::Int64) = PrimeField{P}(P + x.intval - (y % P)) | |
Base.:-{P}(x::Int64, y::PrimeField{P}) = PrimeField{P}(P + (x % P) - y.intval) | |
Base.:*{P}(x::PrimeField{P}, y::PrimeField{P}) = PrimeField{P}(x.intval * y.intval) #may not work if P > sqrt(max(UInt64)) | |
Base.:*{P}(x::Int64, y::PrimeField{P}) = x >= 0 ? PrimeField{P}(x * y.intval) : -(PrimeField{P}(-x * y.intval)) | |
Base.:/{P}(x::PrimeField{P}) = x^(P-2) | |
Base.:/{P}(x::PrimeField{P},y::PrimeField{P}) = x * (/(y)) | |
Base.one{P}(::Type{PrimeField{P}}) = PrimeField{P}(one(UInt64)) | |
Base.zero{P}(::Type{PrimeField{P}}) = PrimeField{P}(zero(UInt64)) | |
Base.convert{P}(::Type{PrimeField{P}}, n::Int64) = PrimeField{P}(UInt64(n)) | |
Base.promote_rule{P}(::Type{Int64}, ::Type{PrimeField{P}}) = PrimeField{P} | |
Base.:(==){P}(a::PrimeField{P}, b::PrimeField{P}) = a.intval == b.intval | |
""" | |
PF = PrimeField{15733} | |
PrimeField{15733} | |
julia> EC = EllipticCurve{1,3} | |
y^2 = x^3 + 1x + 3 | |
julia> p1 = EllipticPoint{PF, EC}(PF(6),PF(15)) | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x0000000000000006),PrimeField{15733}(0x000000000000000f)) | |
julia> p2 = EllipticPoint{PF, EC}(PF(2),PF(3103)) | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x0000000000000002),PrimeField{15733}(0x0000000000000c1f)) | |
julia> p3 = EllipticPoint{PF, EC}(PF(8),PF(1267)) | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x0000000000000008),PrimeField{15733}(0x00000000000004f3)) | |
julia> p1x2 = p1 + p1 | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x00000000000009c5),PrimeField{15733}(0x000000000000243b)) | |
julia> p1 + p1 + p1 + p1 | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x00000000000029fb),PrimeField{15733}(0x000000000000134c)) | |
julia> p1x2 + p1x2 | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x00000000000029fb),PrimeField{15733}(0x000000000000134c)) | |
julia> 2 * p1x2 | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x00000000000029fb),PrimeField{15733}(0x000000000000134c)) | |
julia> (p1 + p2) + p3 | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x0000000000003b22),PrimeField{15733}(0x0000000000003498)) | |
julia> p1 + (p2 + p3) | |
EllipticPoint{PrimeField{15733},EllipticCurve{1,3}}(PrimeField{15733}(0x0000000000003b22),PrimeField{15733}(0x0000000000003498)) | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment