Created
January 21, 2025 21:26
-
-
Save j2kun/75b676fe90d5ba1f2c67ad1a2409406b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#map = affine_map<(d0, d1) -> (d0 * 16 + d1)> | |
#map1 = affine_map<(d0, d1) -> (d1)> | |
#map2 = affine_map<(d0) -> (d0)> | |
#map3 = affine_map<(d0, d1, d2) -> (d0, d2)> | |
#map4 = affine_map<(d0, d1, d2) -> (d2, d1)> | |
#map5 = affine_map<(d0, d1, d2) -> (d0, d1)> | |
module { | |
func.func @matmul(%arg0: !secret.secret<tensor<1x16xf32>> {tensor_ext.layout = #tensor_ext.layout<layout = (d0, d1) -> (d0 * 16 + d1)>}) -> (!secret.secret<tensor<1x16xf32>> {tensor_ext.layout = #tensor_ext.layout<layout = (d0, d1) -> (d1)>}) { | |
%cst = arith.constant dense<"0x5036CB3DE147C3BEE4A9393E47C021BE40F376BFA1078D3E8D53EB3DD6E0493EEFFC3CBFBEB947BE4597B5BBD185903E9B9C1BBEEB0713BD23B418BF66736C3EED693F3E584F72BF3CB9E83EBD0E8D3E4D87BDBE5A0439BFBE94AABECDCA91BE695FA93E870B93BE576920BF6294083F4C08633DCBACC6BDD8C9243FABF141BE647E8E3F27116D3DBA00FA3DDDD4C93EA96AA03E1FD4A7BE3C3297BD387D02BFA695923E3402CB3E6A4E0F3E8D0700BF195E3E3ECA2E0EBF6CAA17BE63FE853E1C7029BFAA05383F0DBFF0BEBF82CB3F8D9F843D3640A63F75BF7FBEF615053D1937CB3FC68B41BEEC66B9BED998223F90944FBD28F39CBC21AE853F26F7803FBEE1923F32109FBF79DF193F726237BFBF6FFB3F55B69FBF1EFEF83E7D4EB63F553A37BF50F054BF4072EE3FACE7A1BF511F9DBFE8A4C23F3C11793F68822ABF83F258BEC956703F4E00073FE1645E3F9C8203BF6D8B66BD1936893F0042113E6EC745BF161EB23E570AFE3D79CC633C8E44723F8D844E3FBE51FABE7BFA0F3F77DDA1BFADE2DCBE29DA10BEA4569FBD24B92ABE4DF072BFAE8AA13E4C661B3F3DCF823E4FDC1F3E961D7C3E1039C43D665C36BF2791AF3D47B452BE34128B3ED7EDB93CEE8F443E1C9693BDB0863BBF7F70C5BEC166A93EAF6CACBDBF5F023FEC98153FB562A1BD5FEE0ABD8FB21CBFCE54193FF31C79BE2A0A763EA3B655BF309239C03EF9903F12360BBFD15A1FC0733F6C3F8D4BDF3F615C2DC083868D3FC2D49C3FD9A115C01EC09EBF36CD1B3F9ABE19C05129963F4CA4BDBFAB2F1C3E842D833E90A07CBFEEFCFBBD97BE063E7CE7DA3EBF4AEABD473F593F497814BD8523E03DCCA8D6BDEA77253E99D43DBEECACB53E74A657BF7AE739BECC272F3FB0C3163F7803133F051EBDBE94A451BF1F83C13F9FD976BFE32D25BF911CAB3F07ED413DD65AFDBE532AA23F85E451BF88925B3E3D09BD3D6C0AC33F2B3A19BFD1DB2ABFCDB2E83EAE500E3FE4AA0B3F0284113EB809763EDF71D0BD4BC424BE13E9853ED757033F15A656BE522F40BEA19AA4BEF1F9953E0FDF2E3D198BD9BE5D971B3FDC29103F598190BF0C8726BEF339193FCD4C10BF382D6CBE7A020C3F016DA2BE590DF63E1923163D8B94383D1AD4EABEFDA50DBBBDA0BABCA75C0DBF1091853ECC190A3F369C0D3FA2AD41BE1B19E13CC88265BF2DD392BD6509A73ED73A6F3EC4280CBFC24284BE76727CBEC5DE023F79B7B8BE6E8E23BF12C739BDED900CBEECD986BF65AB74BF1A15F63EA1F5FA3E6B2BABBE9C4FECB895E499BE2D0268BE8EA7EABE374FFD3DADBB19BFC759C83F4A69D73E37B836BFE5F4E1BE19464BBFAE4E853D022E55BE1CDB073F6E31C9BEC202C5BE4BF853BEEE54DB3EEBC9613E74C317BEB9F2A3BE755B6F3F37CE383FF01E2F3D989532BE1C591EBE"> : tensor<16x16xf32> | |
%cst_0 = arith.constant dense<[-0.45141533, -0.0277900472, 0.311195374, 0.18254894, -0.258809537, 0.497506738, 0.00115649134, -0.194445714, 0.158549473, 0.000000e+00, 0.310650676, -0.214976981, -0.023661999, -0.392960966, 6.472870e-01, 0.831665277]> : tensor<16xf32> | |
%0 = secret.generic attrs = {layout = [#map]} { | |
%2 = tensor.empty() : tensor<16x16xf32> | |
secret.yield %2 : tensor<16x16xf32> | |
} -> !secret.secret<tensor<16x16xf32>> | |
%1 = secret.generic ins(%arg0, %0 : !secret.secret<tensor<1x16xf32>>, !secret.secret<tensor<16x16xf32>>) attrs = {arg0 = {layout = #map}, arg1 = {layout = #map}, layout = [#map1]} { | |
^body(%input0: tensor<1x16xf32>, %input1: tensor<16x16xf32>): | |
%collapsed = tensor.collapse_shape %input0 [[0, 1]] {layout = [#map2]} : tensor<1x16xf32> into tensor<16xf32> | |
%2 = linalg.vecmat {indexing_maps = [#map3, #map4, #map5], layout = [#map2]} ins(%collapsed, %cst : tensor<16xf32>, tensor<16x16xf32>) outs(%cst_0 : tensor<16xf32>) -> tensor<16xf32> | |
%expanded = tensor.expand_shape %2 [[0, 1]] output_shape [1, 16] {layout = [#map1]} : tensor<16xf32> into tensor<1x16xf32> | |
secret.yield %expanded : tensor<1x16xf32> | |
} -> !secret.secret<tensor<1x16xf32>> | |
return %1 : !secret.secret<tensor<1x16xf32>> | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment