Last active
December 17, 2022 10:59
-
-
Save jaymon0703/d69ad008b21ef7af4ffd9918713bdda4 to your computer and use it in GitHub Desktop.
Hierarchical Risk Parity implementation in Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Python 3 code | |
import matplotlib.pyplot as mpl | |
import scipy.cluster.hierarchy as sch,random | |
import numpy as np | |
import pandas as pd | |
# Now, take corMat and covMat generated from R, input into Marcos' Python, and check output is the same... | |
col_list = ["IGV.Close", "TLT.Close", "IAU.Close", "IYR.Close"] | |
corr = pd.read_csv("corMat_23072021.csv", usecols=col_list) | |
cov = pd.read_csv("covMat_23072021.csv", usecols = col_list) | |
#------------------------------------------------------------------------------ | |
def getIVP(cov,**kargs): | |
# Compute the inverse-variance portfolio | |
ivp=1./np.diag(cov) | |
ivp/=ivp.sum() | |
return ivp | |
#------------------------------------------------------------------------------ | |
def getClusterVar(cov,cItems): | |
# Compute variance per cluster | |
cov_=cov.loc[cItems,cItems] # matrix slice | |
w_=getIVP(cov_).reshape(-1,1) | |
cVar=np.dot(np.dot(w_.T,cov_),w_)[0,0] | |
return cVar | |
#------------------------------------------------------------------------------ | |
def plotCorrMatrix(path,corr,labels=None): | |
# Heatmap of the correlation matrix | |
if labels is None:labels=[] | |
mpl.pcolor(corr) | |
mpl.colorbar() | |
mpl.yticks(np.arange(.5,corr.shape[0]+.5),labels) | |
mpl.xticks(np.arange(.5,corr.shape[0]+.5),labels) | |
mpl.savefig(path) | |
mpl.clf() | |
mpl.close() # reset pylab | |
return | |
plotCorrMatrix('HRP3_corr0.png',corr,labels=corr.columns) | |
#3) cluster | |
def correlDist(corr): | |
# A distance matrix based on correlation, where 0<=d[i,j]<=1 | |
# This is a proper distance metric | |
dist=((1-corr)/2.)**.5 # distance matrix | |
return dist | |
#------------------------------------------------------------------------------ | |
dist=correlDist(corr) | |
link=sch.linkage(dist,'single') | |
def getQuasiDiag(link): | |
# Sort clustered items by distance | |
link=link.astype(int) | |
sortIx=pd.Series([link[-1,0],link[-1,1]]) | |
numItems=link[-1,3] # number of original items | |
while sortIx.max()>=numItems: | |
sortIx.index=range(0,sortIx.shape[0]*2,2) # make space | |
df0=sortIx[sortIx>=numItems] # find clusters | |
i=df0.index;j=df0.values-numItems | |
sortIx[i]=link[j,0] # item 1 | |
df0=pd.Series(link[j,1],index=i+1) | |
sortIx=sortIx.append(df0) # item 2 | |
sortIx=sortIx.sort_index() # re-sort | |
sortIx.index=range(sortIx.shape[0]) # re-index | |
return sortIx.tolist() | |
#------------------------------------------------------------------------------ | |
sortIx=getQuasiDiag(link) | |
sortIx=corr.index[sortIx].tolist() # recover labels | |
df0=corr.iloc[sortIx,sortIx] # reorder | |
plotCorrMatrix('HRP3_corr1.png',df0,labels=df0.columns) | |
#4) Capital allocation | |
cov_colnames = cov.columns.values | |
cov.rename(columns={'IGV.Close': 0, 'TLT.Close': 1, 'IAU.Close': 2, 'IYR.Close': 3}, inplace = True) | |
def getRecBipart(cov,sortIx): | |
# Compute HRP alloc | |
w=pd.Series(1,index=sortIx) | |
cItems=[sortIx] # initialize all items in one cluster | |
print(cItems) | |
while len(cItems)>0: | |
cItems=[i[j:k] for i in cItems for j,k in ((0,len(i)//2), (len(i)//2,len(i))) if len(i)>1] # bi-section | |
for i in range(0,len(cItems),2): # parse in pairs | |
cItems0=cItems[i] # cluster 1 | |
cItems1=cItems[i+1] # cluster 2 | |
cVar0=getClusterVar(cov,cItems0) | |
cVar1=getClusterVar(cov,cItems1) | |
alpha=1-cVar0/(cVar0+cVar1) | |
w[cItems0]*=alpha # weight 1 | |
w[cItems1]*=1-alpha # weight 2 | |
return w | |
hrp=getRecBipart(cov,sortIx) | |
print(hrp) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment