Created
June 7, 2020 10:16
-
-
Save jcrousse/f396b8ed29ac05651f5a5382581a4e2a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_learned_scores(**kwargs): | |
""" | |
scores each sentence, then multiply by score before next sequence layer | |
""" | |
sent_len = kwargs.get('sent_len') | |
embed_size = kwargs.get('embedding_size') | |
seq_len = kwargs.get("seq_len") | |
pre_embedded = kwargs.get("pre_embedded", False) | |
assert seq_len % sent_len == 0, "sequence length must be a multiple of sentence length" | |
sent_per_obs = seq_len // sent_len | |
concat_outputs = kwargs.get("concat_outputs", False) | |
lstm_units_1 = kwargs.get('lstm_units_1', 16) | |
lstm_units_2 = kwargs.get('lstm_cells', 16) | |
if pre_embedded: | |
inputs = tf.keras.layers.Input(shape=(None, ), name="input") | |
embedded = tf.reshape(inputs, (-1, 1200, 768)) | |
else: | |
inputs = tf.keras.layers.Input(shape=(None,), name="input") | |
embedded = tf.keras.layers.Embedding(kwargs.get('vocab_size'), embed_size)(inputs) | |
reshaped = tf.reshape(embedded, (-1, sent_len, embed_size)) | |
lstm_level1 = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(lstm_units_1))(reshaped) | |
x = tf.keras.layers.Dense(1, activation=None)(lstm_level1) | |
logits = tf.reshape(x, (-1, sent_per_obs)) | |
score = tf.keras.layers.Softmax(name="score")(logits) | |
weighted = tf.multiply(lstm_level1, tf.reshape(score, (-1, 1))) | |
reshaped_level2 = tf.reshape(weighted, (-1, sent_per_obs, lstm_units_1*2)) | |
w_average = tf.keras.layers.GlobalAveragePooling1D()(reshaped_level2) | |
lstm_level2 = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(lstm_units_2))(reshaped_level2) | |
if concat_outputs: | |
classifier = tf.keras.layers.Dense(1)(lstm_level2) | |
classifier2 = tf.keras.layers.Dense(1)(w_average) | |
outputs = tf.keras.layers.concatenate([classifier, classifier2], name="output") | |
else: | |
classifier = tf.keras.layers.Dense(1, name="output")(lstm_level2) | |
classifier2 = tf.keras.layers.Dense(1, name="output_2")(w_average) | |
outputs = [classifier, classifier2] | |
model = tf.keras.Model(inputs=inputs, outputs=outputs) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment