Last active
August 27, 2015 17:34
-
-
Save jeffreyhanson/d4d15eedd40abcbeb0a0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#### Initialization | |
# set global pars | |
rm(list=ls()) | |
set.seed(500) | |
# set user params | |
n=500 | |
spline_df=5 | |
# load deps | |
library(rstan) | |
library(magrittr) | |
library(plyr) | |
library(dplyr) | |
library(ggplot2) | |
library(mgcv) | |
library(splines) | |
options(mc.cores=4) | |
rstan_options(auto_write=TRUE) | |
# define functions | |
test=function(){source('F:/mainFS/PHD/PAPERS/2/scripts/models/stan_spline.R')} | |
# define model | |
model_code = " | |
data { | |
int<lower=1> n_train; // number of training observations | |
int<lower=1> n_predict; // number of observations to predict | |
int<lower=1> d; // number of parameters | |
real y_train[n_train]; // response variable training data | |
matrix[n_train,d] X_train; // model matrix for training observations | |
matrix[n_predict,d] X_predict; // model matrix for test observations | |
} | |
parameters { | |
vector[d] beta; | |
real<lower=0> sigma; | |
} | |
model { | |
vector[d] mu; | |
// priors | |
beta ~ normal(0,10); | |
sigma ~ cauchy(0, 2.5); | |
// likelihood | |
y_train ~ normal(X_train * beta, sigma); | |
} | |
generated quantities { | |
vector[n_predict] y_predict; | |
y_predict <- X_predict * beta; | |
for (i in 1:n_predict) | |
y_predict[i] <- normal_rng(y_predict[i], sigma); | |
} | |
" | |
#### Preliminary processing | |
# load data | |
raw_data = gamSim(1,n=500,dist="normal",scale=1) | |
# make data.frame with predicted values | |
predict_data=data.frame( | |
y=0, | |
x2=seq( | |
min(raw_data$x2) - (0.25*abs(diff(range(raw_data$x2)))), | |
max(raw_data$x2) + (0.25*abs(diff(range(raw_data$x2)))), | |
length.out=100 | |
) | |
) | |
# calculate knot positions | |
knot_positions = stats::quantile( | |
raw_data$x2, | |
seq.int(0, 1, length.out = (spline_df - 1L) + 2L)[-c(1L, (spline_df - 1L) + 2L)] | |
) | |
# model formula | |
model_formula=y ~ ns(x2, knots=knot_positions, Boundary.knots=range(predict_data$x2)) | |
# make model matrices | |
matrix_train=model.matrix( | |
model_formula, | |
raw_data | |
) | |
matrix_predict=model.matrix( | |
model_formula, | |
predict_data | |
) | |
# prepare data for stan | |
model_data=list( | |
d=ncol(matrix_train), | |
y_train=raw_data$y, | |
n_train=nrow(matrix_train), | |
X_train=matrix_train, | |
n_predict=nrow(matrix_predict), | |
X_predict=matrix_predict | |
) | |
#### Main processing | |
# run model | |
model_results=stan( | |
model_code=model_code, | |
data=model_data, | |
chains=4, | |
iter=2000, | |
thin=1 | |
) | |
print(model_results, pars=c('beta','sigma')) | |
# calculate predictions | |
predict_data$y=colMeans(rstan::extract(model_results, pars='y_predict')[[1]]) | |
predict_data$upper=apply(rstan::extract(model_results, pars='y_predict')[[1]],2,quantile,c(0.025)) | |
predict_data$lower=apply(rstan::extract(model_results, pars='y_predict')[[1]],2,quantile,c(0.975)) | |
#### Exports | |
# plot results | |
p1=ggplot() + | |
geom_point(aes(x=x2, y=y), data=raw_data) + | |
geom_ribbon( | |
aes(ymax=upper, ymin=lower, x=x2), | |
alpha=0.2, | |
data=predict_data | |
) + | |
geom_line( | |
aes(x=x2, y=y), | |
colour='blue', | |
data=predict_data | |
) + | |
xlab('Predictor variable') + | |
ylab('Reponse variable') + | |
ggtitle('Fixed knot natural spline fit using Stan') | |
print(p1) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment