Last active
June 20, 2025 17:43
-
-
Save jeroos/c4336e8e177ab634a91968431d8af4cd to your computer and use it in GitHub Desktop.
Streamlining AWS Lambda with DuckDB for Dynamic Data Handling
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json | |
import os | |
import duckdb | |
import boto3 | |
import datetime | |
from typing import Any, Dict | |
def construct_prepared_sql_and_params(sql_template, bind_params): | |
single_value_params = {k: v for k, v in bind_params.items() if not isinstance(v, list)} | |
list_params = {k: v for k, v in bind_params.items() if isinstance(v, list)} | |
for key in single_value_params.keys(): | |
sql_template = sql_template.replace(f"{{{key}}}", "?") | |
for key, values in list_params.items(): | |
placeholders = ', '.join(['?'] * len(values)) | |
sql_template = sql_template.replace(f"{{{key}}}", placeholders) | |
flat_params = [] | |
for key in bind_params: | |
if key in single_value_params: | |
flat_params.append(single_value_params[key]) | |
elif key in list_params: | |
flat_params.extend(list_params[key]) | |
return sql_template, flat_params | |
def serialize_dates(row): | |
for key, value in row.items(): | |
if isinstance(value, datetime.date): | |
row[key] = value.strftime('%d-%m-%Y') | |
return row | |
def lambda_handler(event: Dict[str, Any], context): | |
print("Duckdb Lambda received event: " + json.dumps(event, indent=4)) | |
file_name = event.get('file_name') | |
sql = event.get('sql') | |
bind_params = event.get('bind_params', {}) | |
return_type = event.get('return_type', 'List') | |
s3 = boto3.client('s3') | |
bucket_name = os.getenv('BUCKET_NAME') | |
local_file_name = f"/tmp/{file_name}" | |
os.makedirs(os.path.dirname(local_file_name), exist_ok=True) | |
s3.download_file(bucket_name, file_name, local_file_name) | |
conn = duckdb.connect(database=':memory:', read_only=False) | |
prepared_sql = sql % local_file_name | |
try: | |
prepared_sql, flat_params = construct_prepared_sql_and_params(prepared_sql, bind_params) | |
print(prepared_sql) | |
print(f"flat_params -> {flat_params}") | |
cursor = conn.execute(prepared_sql, parameters=flat_params) | |
columns = [description[0] for description in cursor.description] | |
fetched_results = [dict(zip(columns, row)) for row in cursor.fetchall()] | |
fetched_results = [serialize_dates(row) for row in fetched_results] | |
if return_type == 'Single': | |
results = fetched_results[0] if fetched_results else {} | |
else: | |
results = fetched_results | |
finally: | |
conn.close() | |
print("Duckdb Lambda processing completed") | |
return results |
this works for me.
ref: https://alexander-grun.github.io/ag-blog/duck-db-aws-lambda-layer/
To make it run on Lambda, I also need to set up home_directory. This is my simple Lambda code.
import json
import duckdb
def lambda_handler(event, context):
print('Hi')
duckdb_conn = duckdb.connect()
print(f"Installing duckdb extensions. Installing httpfs.")
duckdb_conn.sql("SET home_directory='/tmp';")
duckdb_conn.sql("install httpfs")
print(f"Loading httpfs")
duckdb_conn.sql("load httpfs")
print('LOADED!')
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
this works for me.
ref: https://alexander-grun.github.io/ag-blog/duck-db-aws-lambda-layer/
TY @alexander-grun