Created
October 12, 2021 09:23
-
-
Save jkjung-avt/88d6d2578835b167dfb07be12827eb46 to your computer and use it in GitHub Desktop.
Example code for handling TensorRT INT8 calibration file
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
import struct | |
lines = Path('calib_yolov4-int8-608.bin').read_text().splitlines() | |
for line in lines: | |
pair = line.split(':') | |
if len(pair) != 2: | |
continue | |
assert len(pair[1]) == 9 | |
bstr = bytes.fromhex(pair[1][1:]) # convert to byte string | |
unit = struct.unpack('>f', bstr)[0] # convert to float32 | |
print('%s:\t%f' % (pair[0], unit)) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorrt as trt | |
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) | |
EXPLICIT_BATCH = [1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)] | |
builder = trt.Builder(TRT_LOGGER) | |
network = builder.create_network(*EXPLICIT_BATCH) | |
parser = trt.OnnxParser(network, TRT_LOGGER) | |
with open('yolov4-int8-608.onnx', 'rb') as f: | |
parser.parse(f.read()) | |
shape = list(network.get_input(0).shape) | |
shape[0] = 1 | |
network.get_input(0).shape = shape | |
for layer in network: | |
if layer.type == trt.LayerType.CONCATENATION: | |
inputs = [layer.get_input(i).name for i in range(layer.num_inputs)] | |
outputs = [layer.get_output(i).name for i in range(layer.num_outputs)] | |
print('Layer %s' % layer.name) | |
print(' inputs: %s' % str(inputs)) | |
print(' outputs: %s' % str(outputs)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment