Created
October 6, 2016 15:57
-
-
Save jmaupetit/7b6250a06de5a322c278c3c7811ef063 to your computer and use it in GitHub Desktop.
dateparser.parse vs dateutil.parser.parse
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
"""Compare (fuzzy) dateutils vs dateparser `parse` methods""" | |
import sys | |
from dateparser import parse as dp_parse | |
from datetime import datetime, timedelta | |
from dateutil.parser import parse as du_parse | |
NOW = datetime.now() | |
DP_SETTINGS = { | |
'RELATIVE_BASE': NOW, | |
} | |
EXPECTED_DATETIME = datetime(year=2016, month=9, day=1) | |
DATASET = ( | |
# (query, expected) | |
('2016/09/01', EXPECTED_DATETIME), | |
('2016-09-01', EXPECTED_DATETIME), | |
('09/01/2016', EXPECTED_DATETIME), | |
('09-01-2016', EXPECTED_DATETIME), | |
('09012016', EXPECTED_DATETIME), | |
('09/01/2016 15:20', EXPECTED_DATETIME.replace(hour=15, minute=20)), | |
('09/01/2016 at 15h20', EXPECTED_DATETIME.replace(hour=15, minute=20)), | |
('15 min ago', NOW - timedelta(minutes=15)), | |
('two hours ago', NOW - timedelta(hours=2)), | |
('a day ago', NOW - timedelta(days=1)), | |
('tuesday', ( | |
NOW.replace(hour=0, minute=0, second=0, microsecond=0) - \ | |
timedelta(days=(NOW.weekday() - 1)))), | |
('monday at noon', ( | |
NOW.replace(hour=12, minute=0, second=0, microsecond=0) - \ | |
timedelta(days=NOW.weekday()))), | |
) | |
def is_equal(time1, time2): | |
return time1 == time2 | |
def parse(parser, query, expected, **options): | |
try: | |
result = parser(query, **options) | |
except: | |
return 0 | |
if result and is_equal(result, expected): | |
return 1 | |
return 0 | |
def bench(dataset): | |
du_scores = [] | |
dp_scores = [] | |
template = '| {:25} | {:>10} | {:>10} |' | |
separator = template.format('-' * 25, '-' * 10, '-' * 10) | |
print(template.format('query', 'dateutil', 'dateparser')) | |
print(separator) | |
for query, expected in dataset: | |
du_score = parse(du_parse, query, expected, fuzzy=True) | |
dp_score = parse(dp_parse, query, expected, settings=DP_SETTINGS) | |
du_scores.append(du_score) | |
dp_scores.append(dp_score) | |
print(template.format(query, du_score, dp_score)) | |
print(separator) | |
print(template.format( | |
'total ({})'.format(len(du_scores)), | |
sum(du_scores), | |
sum(dp_scores)) | |
) | |
def main(): | |
bench(DATASET) | |
return 0 | |
if __name__ == '__main__': | |
sys.exit(main() or 0) |
TBH I don't remember...
Dateparser is noticeably slower than dateutil when parsing a lot of datestrings, and even if dateparser parses fuzzy strings more accurately the speed is a drawback and it's better to use dateutil parser imo
@megz15. Depends on the use case, I guess:
- If you need to parse a large text file with many dates, you may care about speed/performance.
- If you write a CLI with
--start
and--end
parameters, you may want the best experience for your users, even if it takes a ms more to parse.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi,
Nice benchmark code.
I found that dateparser is much slower ~8x that dateutil.parser.
Did you notice the same?
Sincerely,
Amnon