Created
January 31, 2017 15:31
-
-
Save jmsword/49a59b13caaeacda12edb71cf70cdf7c to your computer and use it in GitHub Desktop.
Over-fitting practice
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import statsmodels.formula.api as smf | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import statsmodels.api as sm | |
from sklearn.metrics import mean_squared_error | |
#Set seed for reproducable results (what does this mean?) | |
np.random.seed(414) | |
#Generate toy data | |
X = np.linspace(0, 15, 1000) | |
y = 3 * np.sin(X) + np.random.normal(1 + X, .2, 1000) | |
#Training set to fit model | |
train_X, train_y = X[:700], y[:700] | |
test_X, test_y = X[700:], y[700:] | |
#Testing set to test model built off of training data | |
train_df = pd.DataFrame({'X': train_X, 'y': train_y}) | |
test_df = pd.DataFrame({'X': test_X, 'y': test_y}) | |
#Linear fit model | |
poly_1 = smf.ols(formula = 'y ~ 1 + X', data=train_df).fit() | |
#Quadratic fit model | |
poly_2 = smf.ols(formula = 'y ~ 1 + X + I(X**2)', data=train_df).fit() | |
#Run prediction on training data set | |
#Linear | |
y_train_1 = poly_1.predict(train_df) | |
#Quadratic | |
y_train_2 = poly_2.predict(train_df) | |
#Calculate error | |
#Linear | |
train_diff_1 = y_train_1 - train_y | |
#Quadratic | |
train_diff_2 = y_train_2 - train_y | |
#Calculate mean squared error | |
#Linear | |
train_mse_1 = sum((train_diff_1)**2)/len(train_y) | |
#Quadratic | |
train_mse_2 = sum((train_diff_2)**2)/len(train_y) | |
#Run prediction on testing data set | |
#Linear | |
y_test_1 = poly_1.predict(test_df) | |
#Quadratic | |
y_test_2 = poly_2.predict(test_df) | |
#Calculate error | |
#Linear | |
test_diff_1 = y_test_1 - test_y | |
#Quadratic | |
test_diff_2 = y_test_2 - test_y | |
#Calculate mean squared error | |
#Linear | |
test_mse_1 = sum((test_diff_1)**2)/len(test_y) | |
#Quadratic | |
test_mse_2 = sum((test_diff_2)**2)/len(test_y) | |
#Print training results: | |
print('Training set Linear MSE: ', train_mse_1) | |
print('Training set Quadratic MSE: ', train_mse_2) | |
#Print Training results: | |
print('Testing set Linear MSE: ', test_mse_1) | |
print('Testing set Quadratic MSE: ', test_mse_2) | |
#Plot linear fit | |
fig, ax = plt.subplots() | |
fig = sm.graphics.plot_fit(poly_1,1,ax=ax) | |
plt.show() | |
#Plot quadratic fit | |
fig, ax = plt.subplots() | |
fig = sm.graphics.plot_fit(poly_2,1,ax=ax) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment