Created
January 27, 2023 09:50
-
-
Save joonaojapalo/ecaa02bd1fab71d644e01ebd6d2cb448 to your computer and use it in GitHub Desktop.
Basic 1D Kalman filter implementation with `x_{t+1} = v_t + x_0` dynamics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Adapted from work by Ian Glover (https://gist.github.com/manicai/922976) | |
""" | |
import numpy as np | |
__all__ = ["kalmanfilt1d"] | |
def kalmanfilt1d(x, time_step=0.1, n_init_samples=10, mesurement_noise=30, process_variance=0.01): | |
"""1-D Kalman filter with x1 = vt + x0 dynamics. | |
Parameters: | |
x (np.array) : Input data. | |
time_step (float) : Time step length. | |
n_init_samples (int) : How many samples to include initial state estimation. | |
Returns: | |
np.array() of size Nx2 estimates for position and velocity [[position, velocity], ...] | |
""" | |
########################################################################## | |
# Model | |
# Initial state estimates | |
half_n = n_init_samples // 2 | |
estimate_position = np.median(x[0:n_init_samples]) | |
delta_position = np.median( | |
x[half_n:half_n+n_init_samples]) - estimate_position | |
estimate_velocity = (delta_position) / (max(half_n, 1) * time_step) | |
# Covariance matrix | |
P_xx = 0.1 # Variance of the position | |
P_xv = 0.1 # Covariance of position and velocity | |
P_vv = 0.1 # Variance of the velocity | |
########################################################################## | |
# Model parameters | |
position_process_variance = process_variance | |
velocity_process_variance = process_variance | |
R = mesurement_noise # Measurement noise variance | |
N = x.shape[0] | |
output = np.zeros([N, 2]) | |
for i, measurement in enumerate(x): | |
################################################################## | |
# Temporal update (predictive) | |
estimate_position += estimate_velocity * time_step | |
# Update covariance | |
P_xx += time_step * (2.0 * P_xv + time_step * P_vv) | |
P_xv += time_step * P_vv | |
P_xx += time_step * position_process_variance | |
P_vv += time_step * velocity_process_variance | |
################################################################## | |
# Observational update (reactive) | |
vi = 1.0 / (P_xx + R) | |
kx = P_xx * vi | |
kv = P_xv * vi | |
if np.isnan(measurement): | |
measurement = estimate_position | |
estimate_position += (measurement - estimate_position) * kx | |
estimate_velocity += (measurement - estimate_position) * kv | |
P_xx *= (1 - kx) | |
P_xv *= (1 - kx) | |
P_vv -= kv * P_xv | |
output[i, :] = [estimate_position, estimate_velocity] | |
return output |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment