Last active
August 29, 2015 14:26
-
-
Save jose-roberto-abreu/b6d5f1c5c6c6bf6d0fa4 to your computer and use it in GitHub Desktop.
NN Implementation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"nbformat": 4, "nbformat_minor": 0, "cells": [{"cell_type": "code", "outputs": [{"output_type": "stream", "name": "stdout", "text": "Probability Of Pos : 0.122164\n0\n"}], "source": "import numpy as np\n\n#Utility Functions\ndef loadDataSet():\n dataset = np.array([[1,1,1],\n [1,1,0],\n [1,0,1],\n [1,0,0]])\n label = np.array([[1],[0],[0],[0]])\n return dataset,label\n\ndef sigmoid(z,derivate=False):\n if derivate:\n #Derivate Sigmoid Function\n return z * (1-z)\n #Simoidal Function\n return 1.0 / (1.0 + np.e**(-z))\n\ndef classify(value):\n print(\"Prob Of Pos : %f\"%value)\n if value >= 0.5:\n print(\"1\")\n else:\n print(\"0\")\n\n#Arquitecture\n'''\n 3 nodes input layer - include bias\n 3 nodes hidden layer - include bias\n 1 node output layer\n'''\n \n#Calc - HardCode for the arquitecture above\nX,y = loadDataSet()\nnumber_observations = X.shape[0]\nweights_1 = np.random.random((2,3))\nweights_2 = np.random.random((1,3))\n\nmaxIter = 1000\nactivateDebug = False\nfor iterNumber in range(maxIter):\n #FeedForward\n a_1 = sigmoid(np.dot(X,weights_1.T))\n a_1 = np.hstack((np.ones((number_observations,1)),a_1))\n a_2 = sigmoid(np.dot(a_1,weights_2.T))\n \n #BackPropagation\n delta_2 = (y - a_2) * sigmoid(a_2,True)\n delta_1 = delta_2.dot(weights_2) * sigmoid(a_1,True)\n \n if iterNumber % 100 == 0 and activateDebug:\n print(\"Error : %f - %d\"%(np.sum(delta_2),iterNumber))\n \n #DELTA1:\n '''\n 1)Product delta_1 * activation - in this case X o a_0\n 2)Sum by columns to get acumulate\n 3)Throw away first column\n 4)Make a reshape\n 5)Tile the vector, to be equal dimension of weights\n '''\n DELTA_1 = np.tile((np.sum(delta_1 * X,axis=0)[1:]).reshape(2,1),3)\n \n #DELTA2:\n DELTA_2 = np.sum(delta_2 * a_1,axis=0).reshape(1,3)\n\n weights_1 += DELTA_1\n weights_2 += DELTA_2\n\nTest_X = np.array([[1,0,0]])\na_1 = sigmoid(np.dot(Test_X,weights_1.T))\na_1 = np.hstack((np.ones((1,1)),a_1))\na_2 = sigmoid(np.dot(a_1,weights_2.T))\n\nclassify(a_2)\n", "execution_count": 159, "metadata": {"trusted": true, "collapsed": false}}, {"cell_type": "code", "outputs": [], "source": "", "execution_count": null, "metadata": {"trusted": true, "collapsed": true}}], "metadata": {"language_info": {"mimetype": "text/x-python", "codemirror_mode": {"version": 3, "name": "ipython"}, "nbconvert_exporter": "python", "version": "3.4.3", "name": "python", "pygments_lexer": "ipython3", "file_extension": ".py"}, "kernelspec": {"language": "python", "display_name": "Python 3", "name": "python3"}}} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment