Skip to content

Instantly share code, notes, and snippets.

@joshainglis
Last active December 26, 2015 20:38
Show Gist options
  • Select an option

  • Save joshainglis/7209712 to your computer and use it in GitHub Desktop.

Select an option

Save joshainglis/7209712 to your computer and use it in GitHub Desktop.
{
"metadata": {
"name": "pval"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": "from scipy.stats import norm\nfrom statsmodels.sandbox.stats.multicomp import fdrcorrection0\n# I'm running IPython with --pylab=inline if you are not, uncomment the lines below\n#import numpy as np\n#from matplotlib import pyplot as plt",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Let's start by pulling 1,000,000 samples from a normal distribution. These are essentially $z$-values, as we're using a standard normal distribution with a $\\mu=0$ and $\\sigma^{2}=1$, so we will convert them straight to p-values.\nImagine, in this case, that every p-value (datapoint) is the reult of a hypothesis test."
},
{
"cell_type": "code",
"collapsed": false,
"input": "x = norm.sf(norm.rvs(size=1e6))",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": "The mean p-value is, as expected, $0.5$"
},
{
"cell_type": "code",
"collapsed": false,
"input": "\"Mean = {0:0.3f}\".format(np.mean(x))",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 3,
"text": "'Mean = 0.500'"
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": "And we appear to have a good sampling."
},
{
"cell_type": "code",
"collapsed": false,
"input": "_ = plt.hist(x, bins=20, cumulative=True)\n_ = xlabel(r'$p\\leq x$')\n_ = ylabel('count')",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAERCAYAAAA5VaO0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9w0/X9B/BnGa61owIFKTqaYkuW5kMFgoSgFRsn88oQ\nioAiW5lX6qGAAzzm6IY70a93iOzOUp1VttWdAwUK9gR/cdatreiRBGX8SMKPosDUEih19ActlPL6\n/hH8aLXS0jZ5f2iej7vcte/k8+qr79M8yaf5vBIlIgIiIiJFeqlugIiIIhuDiIiIlGIQERGRUgwi\nIiJSikFERERKMYiIiEipkAXRnDlzkJCQgBtvvFFfq6urQ1ZWFkwmE6ZOnYr6+nr9voKCApjNZmia\nhu3bt+vrfr8fo0ePRnJyMpYtW6avNzc3Izc3F0lJSXA6nTh+/Lh+X3FxMSwWCywWCzZt2qSvV1VV\nISMjA0lJSXjggQfQ0tISql+fiIg6KGRBlJOTg3fffbfVWmFhIUwmEw4dOoQhQ4bgxRdfBACcOHEC\nL7zwAt5//30UFhZi4cKF+jFLlizB0qVL4fF4UF5ejp07dwIASkpKcPr0afj9fmRmZuKpp54CAFy4\ncAF5eXnYvHkziouLkZeXp9f6v//7P0yaNAk+nw81NTUoKSkJ1a9PREQdFLIgGj9+PPr3799qze12\nIzc3F9HR0ZgzZw5cLhcAwOVyITMzEyaTCRkZGRAR/dXSgQMHMHPmTAwYMADTpk1rdUx2djZiY2Mx\nd+5cfd3r9SItLQ1paWkYMWIENE2D1+vVf/7cuXPxk5/8BNnZ2foxRESkTlj/RuTxeJCamgoASE1N\nhdvtBhAMFavVqj/OYrHA5XKhsrISgwYN0tc1TcOOHTsABENF0zQAQHx8PAKBAJqamuByufT1bx/T\n2NiIEydOoF+/fgAAq9Wq1yIiInXCGkSXM00oKiqqzeO/XheRVvUuVTsqKgpRUVGX9fOJiCg8eofz\nh9ntdvj9fthsNvj9ftjtdgCAw+FAaWmp/rj9+/fDbrcjLi4OgUBAX/f5fHA4HPoxPp8PFosFNTU1\nSEhIQExMDBwOB7Zu3drqmNmzZyMmJgaDBg3CV199hf79+7eq9V3Dhg3D4cOHQ7EFREQ9VkpKCior\nKy/7uLC+InI4HCgqKkJjYyOKioowbtw4AMDYsWOxbds2HDt2DGVlZejVqxfi4uIABE/hrV+/HtXV\n1SgpKWkVRGvXrkVDQwPWrFmj19I0Dfv27cPevXuxZ88eeL1eDB8+XD9mzZo1aGhowLp16/Rjvuvw\n4cP6K65Ivz3++OPKezDKjXvBvejJexEkXbp19h/wIQuiWbNm4ZZbbsHBgweRmJiIl19+GfPmzcOx\nY8dgsVjwxRdf4KGHHgIAJCQkYN68efj5z3+O+fPnY/Xq1XqdP//5z3jmmWdgt9sxfvx4jBkzBgBw\n9913o2/fvrBarXj33Xfx2GOPAQB+9KMfYcWKFZg+fTpmzJiBp59+Wq/12GOP4e2334bVakX//v1x\n9913h+rXJyKiDgrZqbnXXnutzfU33nijzfVFixZh0aJF31vXNA2ffPLJ99avuuoqFBUVtVnr3nvv\nxb333vu99euvvx7l5eWXapuIiMKMkxXokpxOp+oWDIN78Q3uxTe4F10XJd+cHKSL+A47Ioo0wXck\nd/V5r3PPnXxFRERESjGIiIhIKQYREREpxSAiIiKlGERERKRUWEf8EBFR97vmmnjU1X2luo1O49u3\n28C3bxPRlaS73nrNt28TEVFEYhAREZFSDCIiIlKKQUREREoxiIiISCkGERERKcUgIiIipRhERESk\nFIOIiIiU4ogfIiLFrvQRPV3FET9t4IgfIgqnro/o4YgfIiKiTmMQERGRUgwiIiJSikFERERKMYiI\niEgpBhERESnFICIiIqUYREREpBSDiIiIlOKIHyKiLoj08TzdgSN+2sARP0TUUV0fzwN0fbyOEXoI\n1uCIHyIiuuIwiIiISCkGERERKcUgIiIipRhERESklJIg+utf/4pbbrkFN910ExYvXgwAqKurQ1ZW\nFkwmE6ZOnYr6+nr98QUFBTCbzdA0Ddu3b9fX/X4/Ro8ejeTkZCxbtkxfb25uRm5uLpKSkuB0OnH8\n+HH9vuLiYlgsFlgsFmzatCkMvy0REV2ShNmpU6dk6NChUl9fLy0tLTJx4kR59913ZeXKlfLwww9L\nU1OTLFiwQFatWiUiIoFAQCwWixw9elTKysrEZrPptSZOnCjr16+X6upqSU9PF4/HIyIiGzZskOnT\np0tDQ4OsWLFCFixYICIiLS0tkpycLHv37pXdu3dLSkpKmz0q2BYiukIBEEC6eOtqDSP00PnnzrC/\nIrr66qshIjh9+jQaGxtx5swZ9OvXD263G7m5uYiOjsacOXPgcrkAAC6XC5mZmTCZTMjIyICI6K+W\nDhw4gJkzZ2LAgAGYNm1aq2Oys7MRGxuLuXPn6uterxdpaWlIS0vDiBEjoGkavF5vuLeAiIi+RUkQ\nFRYWYujQoRg8eDDS09PhcDjg8XiQmpoKAEhNTYXb7QYQDBWr1aofb7FY4HK5UFlZiUGDBunrmqZh\nx44dAAC32w1N0wAA8fHxCAQCaGpqgsvl0te/ewwREakR9hE/J0+exLx58+Dz+dC/f3/cc889ePPN\nNy/ratzglcytiYi+LiKt6l2qdlu1AGD58uX6106nE06ns8P9EdGVgeN5uqrs4q1rwh5Ebrcb48aN\nw7BhwwAA99xzDz744APY7Xb4/X7YbDb4/X7Y7XYAgMPhQGlpqX78/v37YbfbERcXh0AgoK/7fD44\nHA79GJ/PB4vFgpqaGiQkJCAmJgYOhwNbt25tdczs2bPb7PPbQUREPVMwhLpjNE6kcl68fe2JTlUJ\n+6m58ePHY+fOnaipqcHZs2fxzjvv4M4774TD4UBRUREaGxtRVFSEcePGAQDGjh2Lbdu24dixYygr\nK0OvXr0QFxcHIHgKb/369aiurkZJSUmrIFq7di0aGhqwZs0avZamadi3bx/27t2LPXv2wOv1Yvjw\n4eHeAiIi+rbueufI5Xj55ZfltttukzFjxshjjz0mLS0tUltbK1OmTJHExETJysqSuro6/fH5+fmS\nkpIiVqtVKioq9HWv1ys2m02GDh0qeXl5+vq5c+ckJydHEhMTJSMjQ6qqqvT7NmzYIGazWcxms2zc\nuLHN/hRtCxGFGQz0brMrv4fOP3dy+nYbOH2bKDIYY3J2d9QwQg/BGp157uRkBSIiUopBRERESjGI\niIhIKQYREREpxSAiIiKlGERERKQUg4iIiJQK+4gfIqLuwDlxPQcvaG0DL2glMr6eczFqd9QwQg/B\nGryglYiIrjgMIiIiUopBRERESjGIiIhIKQYREREpxSAiIiKlGERERKQUg4iIiJRiEBERkVIc8UNE\nSnBED32NI37awBE/RKHX9RE9xhlro76GEXoI1uCIHyIiuuIwiIiISCkGERERKcUgIiIipRhERESk\nFIOIiIiUYhAREZFSDCIiIlKKQUREREpxxA8RXTaO56HuxBE/beCIH6JL6/p4HqAnjbVRX8MIPQRr\ncMQPERFdcRhERESkFIOIiIiUYhAREZFSSoKooaEB999/P372s59B0zS4XC7U1dUhKysLJpMJU6dO\nRX19vf74goICmM1maJqG7du36+t+vx+jR49GcnIyli1bpq83NzcjNzcXSUlJcDqdOH78uH5fcXEx\nLBYLLBYLNm3aFJ5fmIiIfpCSIHr88cdhMpmwZ88e7NmzB6mpqSgsLITJZMKhQ4cwZMgQvPjiiwCA\nEydO4IUXXsD777+PwsJCLFy4UK+zZMkSLF26FB6PB+Xl5di5cycAoKSkBKdPn4bf70dmZiaeeuop\nAMCFCxeQl5eHzZs3o7i4GHl5eeH/5YmIqBUlQVRaWoo//vGPiImJQe/evdG3b1+43W7k5uYiOjoa\nc+bMgcvlAgC4XC5kZmbCZDIhIyMDIqK/Wjpw4ABmzpyJAQMGYNq0aa2Oyc7ORmxsLObOnauve71e\npKWlIS0tDSNGjICmafB6vSq2gIiILgp7EH3++edoamrCvHnz4HA4sHLlSjQ2NsLj8SA1NRUAkJqa\nCrfbDSAYKlarVT/eYrHA5XKhsrISgwYN0tc1TcOOHTsAAG63G5qmAQDi4+MRCATQ1NQEl8ulr3/3\nGCIiUiPsQdTU1ISDBw9i+vTpKCsrg9frxcaNGy/rIqjgxXStiYi+LiKt6l2qdlu1iIgofMI+4mfY\nsGGwWCyYPHkyAGDWrFl45ZVXYLfb4ff7YbPZ4Pf7YbfbAQAOhwOlpaX68fv374fdbkdcXBwCgYC+\n7vP54HA49GN8Ph8sFgtqamqQkJCAmJgYOBwObN26tdUxs2fPbrPP5cuX6187nU44nc7u2gIipTie\nh7pP2cVb1yiZNWc2m+FyuWC32/HWW29hwoQJOHXqFIqKivDMM8+gqKgI48aNAwCMHTsWjz76KI4d\nO4ZPP/0UvXr1QlxcHIDgKbz169djwoQJKCkpQX5+PoBgEK1duxZ33nkn1qxZo9fSNA379u3D3r17\nISLwer0YPnx4mz1+O4iIepJgCHXHOBgi58Xb157oXBlR4MCBA+JwOGTkyJGyZMkSqa+vl9raWpky\nZYokJiZKVlaW1NXV6Y/Pz8+XlJQUsVqtUlFRoa97vV6x2WwydOhQycvL09fPnTsnOTk5kpiYKBkZ\nGVJVVaXft2HDBjGbzWI2m2Xjxo1t9qdoW4jCAoAA0sWbEWoYoQej1DBCD8EancGhp23g0FPqyYwx\nsLQ7ahihB6PUMEIPwRqdee7kZAUiIlKKQUREREoxiIiISCkGERERKcUgIiIipRhERESkFIOIiIiU\najeI7rjjjg6tEVHoXXNNPKKiorp0IzKaHxzx09jYiDNnzuDkyZOoqanR10+cOIG6urqwNEdErXE8\nD/VEPxhEL730ElavXo0vv/wSN910k76elJSExYsXh6U5IiLq+dod8VNQUNDqU1EjAUf8kFH1nPE8\n3VHDCD0YpYYRegjW6MxzZ4dmzX3++ef48MMPcfbsWX3tN7/5zWX/sCsFg4iMikFktB6MUsMIPQRr\ndOa5s92PgVi2bBm2bNmCW265BT/+8Y/19Z4cREREFD7tviLSNA27du1CdHR0uHpSjq+IyKj4isho\nPRilhhF6CNYIyfTtESNG4MiRI53piIiIqF3tnpo7efIkbrzxRowdOxb9+/cHEPxX2ZYtW0LeHBER\n9XztBtGf/vSncPRBREQRip/Q2gb+jYiMin8jMloPRqlhhB6CNULyrrk+ffroY0HOnj2L8+fPo0+f\nPqitrb38Hoki3DXXxF+cjkBEX2s3iOrr6/Wvz5w5g1deeQXHjx8PaVNEPVXXR/RwPA/1PJ06Nadp\nGnw+Xyj6MQSemqNQ6fqpNeOcglFfwwg9GKWGEXoI1gjJqbnNmzfrX589exbl5eUYNWrUZf8gIiKi\ntrQbRFu3btX/RhQTE4P09HTcddddIW+MiIgiA9811waemqNQ4am57qxhhB6MUsMIPQRrhGSyQiAQ\nwNKlS6FpGjRNQ15eHk6cONGpFomIiL6r3SB6+umn0a9fP5SVlaGsrAz9+vXDihUrwtEbERFFgHZP\nzY0cORK7d+/Wv79w4QJsNlurtZ6Gp+YoVHhqrjtrGKEHo9QwQg/BGiE5Ned0OrFq1SqcOnUK1dXV\nePbZZ+F0OjvTIRER0fe0G0R5eXmoqqrCrbfeivHjx+PLL79EXl5eOHojIqII0O6pufvvvx/5+fn6\n5O2amhr87ne/Q1FRUVgaVIGn5qgt3Teep2ecglFfwwg9GKWGEXoI1gjJBa27d+/WQwgA4uPj8fHH\nH1/2DyK60nV9PA/AET1E39fuqbmkpCQcOnRI//7gwYMYMmRISJsiIqLI0e4rovnz52PixImYMGEC\nRASlpaUoLCwMR29ERBQBOjRZ4cyZM3jrrbcAAJMmTUJsbGzIG1OJfyOithjjs4CM0INRahihB6PU\nMEIPwRqdee7kiJ82MIioLQwio9UwQg9GqWGEHoI1QnIdERERUSgpC6KWlhbYbDZMnjwZAFBXV4es\nrCyYTCZMnTq11QfyFRQUwGw2Q9M0bN++XV/3+/0YPXo0kpOTsWzZMn29ubkZubm5SEpKgtPpbPVB\nfsXFxbBYLLBYLNi0aVMYflMiIroUZUG0evVqaJqmf8REYWEhTCYTDh06hCFDhuDFF18EAJw4cQIv\nvPAC3n//fRQWFmLhwoV6jSVLlmDp0qXweDwoLy/Hzp07AQAlJSU4ffo0/H4/MjMz8dRTTwEIjifK\ny8vD5s2bUVxczAtziYgMQEkQff7553j77bfxwAMP6OcT3W43cnNzER0djTlz5sDlcgEAXC4XMjMz\nYTKZkJGRARHRXy0dOHAAM2fOxIABAzBt2rRWx2RnZyM2NhZz587V171eL9LS0pCWloYRI0ZA0zR4\nvV4FO0BERF9TEkSPPPIIVq1ahV69vvnxHo8HqampAIDU1FS43W4AwVCxWq364ywWC1wuFyorKzFo\n0CB9XdM07NixA0Aw1DRNAxC8ADcQCKCpqQkul0tf/+4xRESkRtiD6M0338SgQYNgs9lavbvict5p\n8fXpvG8TEX1dRDpcu61aREQUPu1e0NrdPvroI2zZsgVvv/02mpqaUFtbi9mzZ8Nut8Pv98Nms8Hv\n98NutwMAHA4HSktL9eP3798Pu92OuLg4BAIBfd3n88HhcOjH+Hw+WCwW1NTUICEhATExMXA4HNi6\ndWurY2bPnt1mn8uXL9e/djqdnDh+heu+OXFE9I2yi7cuEoXKysrkrrvuEhGRlStXysMPPyxnzpyR\n+fPny6pVq0RE5Pjx42KxWOTo0aPy73//W2w2m378xIkT5bXXXpOTJ09Kenq6eDweERHZsGGDTJs2\nTerr62XFihWyYMECERE5f/68JCcny549e2T37t2SnJzcZl+Kt4VCAIAA0sWbEWoYoQej1DBCD0ap\nYYQegjU69f9nN///flnKyspk8uTJIiJSW1srU6ZMkcTERMnKypK6ujr9cfn5+ZKSkiJWq1UqKir0\nda/XKzabTYYOHSp5eXn6+rlz5yQnJ0cSExMlIyNDqqqq9Ps2bNggZrNZzGazbNy4sc2+GEQ9j5H+\nR73yezBKDSP0YJQaRughWKMzOFmhDZys0PMYYypCd9QwQg9GqWGEHoxSwwg9BGt05rmTkxWIiEgp\nBhERESnFICIiIqUYREREpBSDiIiIlGIQERGRUgwiIiJSKuwjfoguF8fzEPVsvKC1Dbyg1Vh6zsWo\n3VHDCD0YpYYRejBKDSP0EKzBC1qJiOiKwyAiIiKlGERERKQUg4iIiJRiEBERkVIMIiIiUopBRERE\nSjGIiIhIKQYREREpxRE/FHIc0UNEl8IgopALhlBXx5cQUU/FU3NERKQUg4iIiJRiEBERkVIMIiIi\nUopBRERESjGIiIhIKQYREREpxSAiIiKlGERERKQUJyvQJXE8DxGFGoOILqnr43kAjughokvhqTki\nIlKKQUREREoxiIiISCkGERERKcUgIiIipcIeRP/9739x++23Y/jw4XA6nXj11VcBAHV1dcjKyoLJ\nZMLUqVNRX1+vH1NQUACz2QxN07B9+3Z93e/3Y/To0UhOTsayZcv09ebmZuTm5iIpKQlOpxPHjx/X\n7ysuLobFYoHFYsGmTZvC8BsTEdElSZhVVVXJrl27RETk5MmTcsMNN0htba2sXLlSHn74YWlqapIF\nCxbIqlWrREQkEAiIxWKRo0ePSllZmdhsNr3WxIkTZf369VJdXS3p6eni8XhERGTDhg0yffp0aWho\nkBUrVsiCBQtERKSlpUWSk5Nl7969snv3bklJSWmzRwXbYlgABJAu3rpawwg9GKWGEXowSg0j9GCU\nGkboIVijM8L+imjw4MEYNWoUAGDgwIEYPnw4PB4P3G43cnNzER0djTlz5sDlcgEAXC4XMjMzYTKZ\nkJGRARHRXy0dOHAAM2fOxIABAzBt2rRWx2RnZyM2NhZz587V171eL9LS0pCWloYRI0ZA0zR4vd5w\nbwEREX2L0r8RVVZWwuv1YuzYsfB4PEhNTQUApKamwu12AwiGitVq1Y+xWCxwuVyorKzEoEGD9HVN\n07Bjxw4AgNvthqZpAID4+HgEAgE0NTXB5XLp6989hoiI1FA2WaGurg4zZ87Es88+iz59+iB4Fqhj\noqK+f6W+iOjrItKq3qVqt1ULAJYvX65/7XQ64XQ6O9yfUXA8DxGFVtnFW9coCaLm5mZMnz4ds2fP\nRlZWFgDAbrfD7/fDZrPB7/fDbrcDABwOB0pLS/Vj9+/fD7vdjri4OAQCAX3d5/PB4XDox/h8Plgs\nFtTU1CAhIQExMTFwOBzYunVrq2Nmz57dZo/fDqIrFcfzEFFoOS/evvZEp6qE/dSciCA3NxdpaWlY\nvHixvu5wOFBUVITGxkYUFRVh3LhxAICxY8di27ZtOHbsGMrKytCrVy/ExcUBCJ7CW79+Paqrq1FS\nUtIqiNauXYuGhgasWbNGr6VpGvbt24e9e/diz5498Hq9GD58eJh3gIiIWumud1d11AcffCBRUVEy\ncuRIGTVqlIwaNUreeecdqa2tlSlTpkhiYqJkZWVJXV2dfkx+fr6kpKSI1WqViooKfd3r9YrNZpOh\nQ4dKXl6evn7u3DnJycmRxMREycjIkKqqKv2+DRs2iNlsFrPZLBs3bmyzRwXbEhIw0DtprvwejFLD\nCD0YpYYRejBKDSP0EKzRGVEXn7DoW6KiotATtiX496+u/h5GqGGEHoxSwwg9GKWGEXowSg0j9BCs\n0ZnnTk5WICIipRhERESkFIOIiIiUYhAREZFSDCIiIlKKQUREREopG/FDl8bxPEQUKRhEBsXxPEQU\nKXhqjoiIlGIQERGRUgwiIiJSikFERERKMYiIiEgpBhERESnFICIiIqUYREREpBSDiIiIlGIQERGR\nUhzxEyKcFUdE1DEMohDp+qw4zokjosjAU3NERKQUg4iIiJRiEBERkVIMIiIiUopBRERESjGIiIhI\nKQYREREpxSAiIiKleEHrD4iPT+z0sdHR3FYioo7iM+YP+Oqrjzp9bFxcZjd2QkTUszGIflDnXxFF\nRf24G/sgIurZ+DciIiJSikFERERKMYiIiEgpBhERESkVkUFUUVEBq9UKs9mM5557TnU7REQRLSKD\naNGiRXjppZdQWlqKv/zlL6iurlbdEhFRxIq4IDp9+jQA4LbbbkNSUhLuvPNOuFwuxV0REUWuiAsi\nj8eD1NRU/XtN07Bjxw6FHRERRTZe0PoDrrlmcqePbWo63I2dEBH1bBEXRHa7HY8++qj+vdfrRWZm\n65E8KSkpOHz4zW74aVGKj+9JNYzQg1FqGKEHo9QwQg9GqaG+h5SUlE4dF3FB1LdvXwDBd86ZTCa8\n9957ePzxx1s9prKyUkVrREQRKeKCCADy8/Px4IMPorm5GQsXLsTAgQNVt0REFLGiRERUN0FERJEr\n4t41920dubD1D3/4A5KTk3HTTTdh//79Ye4wfNrbi3Xr1mHkyJEYOXIkfvWrX+HgwYMKugyPjl7w\n7PF40Lt3b7z++uth7C58OrIPHo8HdrsdVqsVTqczvA2GUXt70djYiPvvvx82mw0ZGRl44403FHQZ\nHnPmzEFCQgJuvPHGH3zMZT9vSgQbNWqUlJeXy5EjR8RiscjJkydb3e9yuSQ9PV1OnTolr776qkya\nNElRp6HX3l589NFH8r///U9ERP7xj39Idna2ijbDor29EBE5f/683H777TJp0iTZtGmTgi5Dr719\nuHDhgqSlpcl7770nItLmPvUU7e1FYWGhzJs3T0REjhw5IsnJyXLhwgUVrYZcRUWFfPLJJ5KWltbm\n/Z153ozYV0QdubDV5XJhxowZiI+Px6xZs+D3+1W0GnId2Yubb75Zf6PHpEmTUF5eHvY+w6GjFzw/\n99xzmDFjBq699tpwtxgWHdmHnTt3YsSIEZgwYQIA9Ni/tXZkL/r27Yu6ujo0NzejpqYGsbGxiIrq\njnexGc/48ePRv3//H7y/M8+bERtEHbmw1e12Q9M0/ftrr70Whw/3vGuELvci3zVr1mDy5M5fZ2Vk\nHdmLL774Am+88QbmzZsHAD3yCacj+7Bt2zZERUVh/PjxmDx5MrZt2xbuNsOiI3sxa9YstLS0YODA\ngbj11luxbt26cLdpGJ153ozId811lIhAvvNejp74pHM5SktLsXbtWnz0Uec/Sv1Kt3jxYjz99NOI\niopq87+RSNHU1IT//Oc/KC0txZkzZ/CLX/wC+/btw9VXX626tbB7/vnn0bt3b1RVVWHv3r2YNGkS\njh49il69Iu/f+p153oy8XbrIbre3+iOa1+vFuHHjWj3G4XDA5/Pp3588eRLJyclh6zFcOrIXALBn\nzx489NBD2LJlC/r16xfOFsOmI3vx8ccf47777sMNN9yAzZs3Y/78+diyZUu4Ww2pjuzDzTffjIkT\nJ2Lw4MFITk7GmDFjUFFREe5WQ64je1FRUYFf//rXiI2NhcPhwPXXX9+j39BzKZ153ozYIPr2ha1H\njhzBe++9B4fD0eoxDocDmzdvxqlTp/Dqq6/CarWqaDXkOrIXx44dw/Tp07Fu3ToMGzZMRZth0ZG9\n+PTTT/HZZ5/hs88+w4wZM1BYWIgpU6aoaDdkOrIP48aNQ3l5Oc6cOYOamhrs2rUL6enpKtoNqY7s\nxR133IGtW7fiwoUL+PTTT1FTU9PqdF4k6czzZkSfmmvrwtaXXnoJAPDggw9i7NixuPXWWzFmzBjE\nx8dj7dq1ijsOnfb24sknn0RNTQ0eeughAMBVV10Ft9utsuWQaW8vIkV7+zBgwADk5ORgzJgxuPba\na/Hkk0+iT58+irsOjfb24r777oPP59P3YvXq1Yo7Dp1Zs2ahvLwc1dXVSExMxBNPPIHm5mYAnX/e\n5AWtRESkVMSemiMiImNgEBERkVIMIiIiUopBRERESjGIiIhIKQYREREpxSAiIiKlGERERKQUg4jo\nCtPU1ITpwprSAAAB2ElEQVR169bh73//u+pWiLpFRI/4ITKKTz75BOvWrYPVasXAgQNx9OhRLFq0\nqNVj6urqsHHjRrS0tODee+9Fv3790NLSgtdffx0HDx7E4MGD4fF48Pvf/75HDuelnotBRGQAjY2N\nuO6663D99dfjl7/8JSZMmKAH0fnz5/H888+jb9++mDVrFmJjY/Xjdu/ejSlTpqC4uBjNzc247777\ncN1116n6NYg6hafmiAwgPT0dLpcLt912G0QE9fX1+n29e/fGsGHDUFtbi8rKylbHjR49GtHR0XC5\nXHA6nXA6nRH5eUB0ZWMQERnEqVOn0KdPH/zrX/9CVlZWq/vuuusuLFq0CF999RUKCgrw4YcfAgh+\nemh1dTX27duHG264Adu3b1fROlGXcPo2kQEcPnwYOTk5WLRoEY4ePYpHHnnkkp9quWvXLuzatQtf\nfPEF+vXrh0AggDFjxuCnP/0p7HZ7GDsn6joGEZEB/POf/0RUVBSys7NVt0IUdnyzApFigUAAf/vb\n3zBhwoQ2729oaMBvf/tbfPffjH369MFzzz0XjhaJQoqviIiISCm+WYGIiJRiEBERkVIMIiIiUopB\nRERESjGIiIhIKQYREREpxSAiIiKlGERERKTU/wP4Zs4574XATQAAAABJRU5ErkJggg==\n",
"text": "<matplotlib.figure.Figure at 0x1152f7d90>"
}
],
"prompt_number": 45
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Which, in turn, means that $\\sim5\\%$ of the pvalues will be $\\le0.05$"
},
{
"cell_type": "code",
"collapsed": false,
"input": "\"Pvals <= 0.05: {0:0.2f}%\".format(100 * np.sum(x <= 0.05) / float(x.size))",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 5,
"text": "'Pvals <=0.05: 5.01%'"
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": "\"So, out of our {0:d} samples, we have {1:d} false positives\".format(x.size, np.sum(x<=0.05))",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": "'So, out of our 1000000 samples, we have 50122 false positives'"
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": "\"The *best* pvalue being {0:0.2e}\".format(np.min(x))",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 7,
"text": "'The *best* pvalue being 5.46e-08'"
}
],
"prompt_number": 7
},
{
"cell_type": "markdown",
"metadata": {},
"source": "Seems pretty significant! This is despite it being randomly pulled from a normal distribution."
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": "_ = plt.boxplot(np.log10(x), vert=False)\n_ = title(r'Boxplot of sample P-values ($log_{10}$ scale)')\n_ = xlabel(r'$\\log_{10}\\left(p-value\\right)$')\n_ = ylabel(r'$x$')",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEgCAYAAABPSzOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHu5JREFUeJzt3XtUVOX+BvBnRFM5InITIWhGsQSBAJUEvER1vB1JPRhl\nulhpWerKW548WV7TzDTDzC6mkkfLS6YeMVp1SAwVTVIJvGcooKEgDqKAyM3398f8ZmBwZhgU3Pj6\nfNaa5ey933fv735neNjs2c5WCSEEiIhIKs2ULoCIiBoew52ISEIMdyIiCTHciYgkxHAnIpIQw52I\nSEIMdyIiCTHc73MajQaJiYmNvp2srCxERUXBwcEBn376aaNv707cq7G4G0rUuGDBAnzwwQf3dJuN\npT7jFxAQgHPnzjVyRU0Xw72BaDQa2Nraws7ODp06dcLkyZNx+fLlRt+uSqWCSqWyqr7du3ff8Xa+\n+eYb2NvbQ6vVYuLEiXe8nsZk7ViYUvP1Cw4OxuzZs1FeXt7AFd5djXeipKQEq1evxmuvvXbPttmY\n6jN+48aNw4cfftjIFTVdDPcGolKpEB8fj6KiIvz666+4cOECVqxYoXRZBiqVCnfzn5GTk5PRs2dP\nNGsm51um5uu3Zs0arFu3Dtu3b1e6rLsWGxuLZ555Bo6OjkbzXFxcFKzq3oiOjsbWrVtx5coVpUtR\nhJw/qQpzdXXFCy+8gB9++MEwLycnB7NmzYJGo8GYMWPw+++/AwDOnj0LJycnw/TFixfh4uKCvXv3\nAtAdUX766ad44okn4OXlhZUrV6KiosLkds1tIzo6GufPn8ezzz4LOzs7LF26tF79n376aezatQuT\nJ09G27ZtkZGRcVvf2NhYhIaGwt7eHt7e3kZ/JXzwwQfo3LkznJycMGrUKOzbt8+wTKPR4IsvvkBo\naChcXV3x73//GyUlJXj++efh5uaGqVOnoqioyKi9teNx9epVfPzxx/D19cWgQYOQkJBgsl1tAQEB\nGDRoEOLj429btnjxYkRFRRnNmzJlCqZMmVLnvtbWrFkzo9MGo0ePxuzZs62q39J417R7926EhIQY\nzevWrRvCw8PND0ADMlfnlStXEBMTA39/fzg7O2PSpEmGPvUZQ0tjZGdnBy8vL+zfv7/xdrApE9Qg\nNBqN2LVrlxBCiL/++ktERESIN954w7C8b9++YuLEieLy5csiNjZWtG3bVpSWlgohhFi9erXo2rWr\nuHHjhujfv7+YPn26oZ9arRZdunQR+/btE2lpaSIoKEisXLnSaLuJiYl1bqNmO3Ms9Q8PDxexsbEm\n++Xn5wsPDw9x5swZIYQQ2dnZ4uzZs4bl3333nbh06ZK4ceOGiImJER4eHkb1BwUFid9//12kp6eL\ntm3biuDgYLFz505x8eJF0bNnT7F+/XqrxqP2Pv7zn/8UkydPFrm5uWLv3r3C3d1d/Pnnnyb3oebr\nl5qaKjw9PcW2bdtua5ednS1sbW1FUVGREEKIyspK4ebmJlJSUurc19o1qlQqo3EaPXq0mD17tsX6\nMzIy6hzvmrp06SJ+/vlno3lLly4Vn3/+ucn2DclSnUOGDBHR0dHizz//FGVlZSI5OdnQr673S31e\n41GjRon333+/sXe1SWK4NxC1Wi3atGkj2rVrJ2xsbISvr6/QarVCCN2bvHXr1qK4uNjQvlevXmL7\n9u2G6SFDhgg/Pz8REBAgysvLDfM1Go3RD/yXX34pIiIijJYnJibWuY26wr2u/uHh4WLNmjUm+165\nckU4OTmJ+Ph4o9pNuXXrlvD09BRHjhwx1BUTE2NY3q9fPxEZGWmYXrhwoXjppZesGo+a+3j9+nXh\n5uYmbty4YWg7depUsWTJEpN16V8/BwcH0adPH7Fo0SJRWVlpsm3v3r0Nv3ASEhKEl5eXxX09fPiw\nUf2Wwn3WrFlm658yZYpYsmSJ0Gq1Vo+3ra2tOHHihNG8iIgIcfr0aSGEEFqtVixatEhs27ZNTJs2\nTWRkZAghdL+03n//fbF161axYsUKMWXKFIvbMcXc+6KwsFDY2tqKK1eu1LkOU++X+rzGb731lhg3\nbly9a5cBT8s0EJVKhbi4OFy9ehVXr17F+PHj0bVrV5SVleHgwYPo1KkT/va3vxna9+jRw+jPzbFj\nx+LEiROYNGkSWrRoYbTuwMBAw/OgoCD8+uuvt23f3DaSk5Otqt+a/uY+yHJycsLXX3+NZcuWGU6l\n5OfnG5bv3LkTkZGRcHd3h6OjIy5duoT09HTD8oCAAMNzV1dXo+n27dsjJyfHaHvWjEdycjLy8/Ph\n7u4OBwcHODg4IDY21ux46F+/goIC7N27FzNmzICNjQ02bNgAOzs72NnZYfDgwQCAkSNHYtOmTQCA\njRs3YtSoURb39ejRoya3aa4Oc/V/9dVXSE5OhqOjo8XxrkmtVhuNX1VVFTIyMtClSxeUlpZiyJAh\nGDVqFCIjIxEeHm44ZTdr1iy0b98ew4cPh4ODA9RqtdX7oGfufbF//36o1Wo4OTmZ7FfX+0XPmtf4\nwoUL0Gg09a5dBgz3RmBnZ4cJEyagqKgIycnJCA0Nxblz51BSUmJoc+jQIfTt2xcAUFxcjKlTp2Ls\n2LGYO3curl69arQ+/blvAEhNTUVYWNht2zS3jT59+gAAbGxsLH6gGhISYrF/XQYNGoRdu3bh5MmT\nyMzMxJIlSwDortZ49dVX8dJLL+H06dMoKCjAww8/bLEWS8sA68fDxcUFeXl5hl+4169fR1xcnFX7\nozdq1CgUFRWhqKjI8BnKc889h6SkJOTk5GDHjh0YOXLkHe2ru7s7cnNzjfbF2vrNjXdtPj4+OHv2\nrGH60KFDCA4OBgAkJCTgscceg6enJwDgzJkzcHZ2RlVVFVauXGnYr6SkJPTr1w+FhYVYvXo1Fi5c\nCAAoKirC8uXLsXr1ahw5csTk9k3V2atXL2RnZ0Or1d7Wvj5jaM1rfPbsWfj4+JisTXYM9wakfwMW\nFxdj1apVsLW1RVhYGJycnBAcHIx33nkHly9fxn/+8x+cOHECAwYMAKD7QO6JJ57AqlWrMHjwYIwf\nP95ondu2bcP+/ftx9OhRrFq1ChEREbdtu65tdO/e3ewPIAA4Oztb7F9z/2o7c+YMdu/ejbKyMjz0\n0ENo2bIl7OzsAOgCoLi4GG5ubrh16xYWLVqEixcv1nNkq1k7Hu3atUPv3r3xzjvvIDs7G1VVVTh+\n/DgOHz58x9vWc3FxQXh4OEaPHo1OnTqhS5cuAOq/r8888wzWrl2LwsJCxMbG4vTp01bVb2m8a3v6\n6aeRkpJimN63bx/Cw8Px3//+F3l5eejcuTMAoLS0FNu2bcP48eNRXFyMDh06oHXr1igpKcHRo0fh\n5+eHdu3aoX///qisrAQArF+/HqGhoRgzZgxiYmJu27a5Ou3t7dGvXz9MmzYNGRkZuHnzJg4cOFDv\nMazrNS4uLsbZs2dN/vJ/EDDcG5D+apROnTph9+7dWLduHVq3bg0A2LBhA2xtbREcHIykpCQkJiai\ndevWiIuLQ0JCAr744gsAQExMDFJTUw1/9qtUKrz++uuYNm0ahg0bhldeeQWjR482uX1z2wCA8ePH\nIz4+Ho6OjiZ/EOvqr6/FlLKyMrz99ttwcXFBjx490K5dO7zxxhsAgA4dOmDRokWIjo5GQEAAysvL\n0bt3b4vjWHM7ta9rNjUeY8aMMbmelStXQq1W47nnnoOLiwtee+01XL9+3eK2rTVy5EgkJiYajm6B\n+u/rjBkzUFhYCG9vb6SmpmLEiBFW1W9pvGt7+eWXsXv3bhQUFADQncbKyMiAo6MjRowYAa1Wi61b\ntyImJgZr1qzBww8/DHt7ezz//PPYvHkz5syZA29vb5PrPn36NNzc3NC8eXPD+muyVGdsbCz8/PwQ\nEREBT09PbNmy5Y7G0NJrvH79ekRFRT0Ql32apNjZfrKKNVe5PEg4HvX33nvviUWLFlnd/tKlS4ar\npObPn2901VBWVpaYN2+eEEKI6dOni5ycHCGEEIMGDWrAihvG448/Ls6dO6d0GYpprvQvFyJqXDNn\nzqxX+8WLF6Njx45o3bo1WrRogcjISMMyUePUnK+vL/Ly8uDo6AhnZ+cGq7ehmPoQ9kHCcCciI8uW\nLTM5v6ioCJs3b8Zvv/2Go0ePIjIyEsnJyfj9998xbdq0e1wl1UUlBG+QTUQkG36gSkQkIYY7EZGE\nFD3nHhgY+MB/6EFEVB8BAQFIS0urs52iR+7p6ekQuu+3abKPuXPnKl4D62SdrJM16h/WHhDztAwR\nkYQY7kREEmK41+Fe3dTgbrHOhsU6G9b9UOf9UGN9KHqd+93e+o2I6EFjbW7yyJ2ISEIMdyIiCTHc\niYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIM\ndyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQ\nw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgk\nxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIi\nCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52I\nSEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAn\nIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHc\niYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIMdyIiCTHciYgkxHAnIpIQw52ISEIM\ndyKiBuLoCKhU9XtApTK7zNHxzmtRCSFEg+1ZfTeuUkHBzRMRNSiVCqh3pFnoZGqRtbnJI3ciIgkx\n3ImIJMRwJyKSEMOdiEhCDHciIgkx3ImIJMRwJyLpqFQqpUtQHMOdiEhCDHciIgkx3ImIJNRo4f7y\nyy/D1dUV/v7+jbUJIiIyo9HCfcyYMfjpp58aa/VERGRBc2sanTt3Dm5ubmjdurXVK+7Tpw+ysrLu\ntK5GlZQEhIcrXUXjsbR/5pbVnv/xx8DUqZbb1e5jadrU+gMDdc/Ntak5b+JE4LnngLQ0Xb+tW4HO\nnYE9e4D8fCA5Wdemc2dd3UlJwPLlumWArq/e1q26fzMygBkzdNPXrgH29tU1paXp+nzwARAaqluP\ni0v1stLS6nn5+cAjj+jmFRQAFRWARgPk5gJVVbppvRYtdNM2Nrpl1FgqlS5AcVaF+5IlSzBixAiE\nh4cjOTkZLVu2RHBwcGPX1mgY7nXP37GjccN9xw6gsFD33Jpwj48HnJ1104WFummNRhe0N2/q2urn\n6cP9l1+qlzWv8U4/fFj3b1mZro7Dh4HKSl2bv/7SLcvN1U3n5VWvp1Ur3bLr16u/qS8vT/dvdrbx\nt/fVntbTBz2DvbHx40SrRiA4OBiZmZnIzMxE7969kZOT09h1ERHRXbDqyD03NxdqtRoxMTE4fvw4\nevXqhWHDhjVIAfPmzTM8Dw8PR3gjHVInJekeAPDuu9Xzw8PlOIq3tH/65bWXtWtXffT87rvAwYPA\n6dO6+enp1X39/HRHzfp2+nXt2QNkZekeGg2wbt3t0zXbHjyoO9IuLweuXtXNA4BPPtGd1khP103r\nz+adPAkcOgS8957uSFdfu75fdnb1vuj/z0p2dvXzmvR9LM2vqjJep37ZtWu6f8vKTK8DuP0onbcp\nUJrK5Ptg7lygRuQYzJtn/LNxp+0bg0qVBCCp/h2FFbZs2SJu3rwphBAiPz9ffPLJJ9Z0E5mZmcLP\nz8/scis33+DmzlVks/eMpf0zt6z2/CefrLtd7T6Wpk2tf+5cy21qzlOrdc/1/dRq3XN7eyFatqxu\no6977tzqZS1b6ubrH/p5QPW0jY3uX7Va99D3AarXY2+ve6hUuvk1H7XnmWrDx7183Lr9zXQP3FGk\nWehkapG1uWnVaZnIyEicOHECAJCZmYlC/eGeBS+++CLCwsJw5swZeHp6Yu3atfX/zUNERHfEqtMy\nNjY26NatGwDd+XdrPkzdtGnT3VXWiGQ4DWOJpf0zt6z2fHNn3Wq2q93H0rSp9euvTLFUm35eRITu\nebt2un5XruiujHFwqL4iJiJCN0/fLz29elnN/an8/wspMjJ08ysrTV8tM2yY7jTVnVwto1bzahll\n3QJgo3QRiuI9VIlIOkplC++hSkREjYrhTkQkIYY7EZGEGO5ERBJiuBORdHihBsOdiEhKDHciIgkx\n3ImIJMRwJyKSEMOdiEhCDHciIglZ9cVhRERkHVPfI2+JsNDHweHO62C4ExE1kDu7vF6gMa7K52kZ\nIiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDD\nnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTE\ncCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJ\nMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhI\nQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCci\nkhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJ\niCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3\nIiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDDnYhIQgx3IiIJMdyJiCTEcCcikhDD\nnYhIQgx3IiIJMdzrkJSUpHQJVmGdDYt1Nqz7oc77ocb6YLjX4X55wVlnw2KdDet+qPN+qLE+GO5E\nRBJiuBMRSUglhBBKbTwwMBDp6elKbZ6I6L4TEBCAtLS0OtspGu5ERNQ4eFqGiEhCDHciIgkpGu4n\nT55EREQEAgMD8eyzz+LUqVNKlmPWiBEjEBQUhKCgIHTs2BFBQUFKl2TW2rVr4ePjA19fX7z11ltK\nl2PSvHnz4OHhYRjTn376SemSzProo4/QrFkzFBQUKF2KSbNnz0ZAQAACAwMRHR0NrVardEkmTZ8+\nHT4+PujWrRumTp2K0tJSpUsy6bvvvoOvry9sbGyQmpqqdDm32bt3L3x8fPDoo49ixYoVlhsLBb3w\nwgvi22+/FUIIsXHjRjFixAgly7HKv/71L7FgwQKlyzDp2LFjIiQkRJw5c0YIIcTly5cVrsi0efPm\niY8++kjpMup0/vx5MWDAAKHRaIRWq1W6HJOuX79ueP7uu++K2bNnK1iNeQkJCaKqqkpUVVWJsWPH\nijVr1ihdkkmnTp0Sf/zxhwgPDxdHjhxRupzbBAYGij179oisrCzRpUsXkZ+fb7atokfu9vb20Gq1\nuHXrFrRaLRwcHJQsp05CCGzZsgUvvvii0qWY9OOPP+KVV17Bo48+CgBwcXFRuCLzxH3wOf60adOw\nZMkSpcuwyM7ODgBQWVmJkpIStGrVSuGKTOvXrx+aNWuGZs2aYcCAAdizZ4/SJZnk7e2Nxx57TOky\nTLp27RoAoG/fvlCr1ejfvz9SUlLMtlc03D/88EMsX74cDg4O+Oyzz7B48WIly6nTvn374OrqCi8v\nL6VLMSkhIQHHjx9Hjx49MHbsWJw8eVLpksxasWIFQkJCsHjxYhQVFSldzm3i4uLg4eGBxx9/XOlS\n6jRz5kx06NABycnJePPNN5Uup06rV6/Gs88+q3QZ951Dhw7B29vbMN21a1ccPHjQbPvmjV1Qv379\nkJube9v8hQsXYv369Zg0aRLGjRuHzz77DK+88gq2bNnS2CWZZK7O999/3/BG3LRpE0aOHHmvSzNi\naTxv3ryJgoIC7Nu3D7t27cLEiROxe/duBaq0XOeECRMwZ84cXL9+HdOnT8eXX36pSChZqnHRokVI\nSEgwzFPyL4263psLFy7EzJkzMXPmTLz11ltYtmyZAlVa9zM0f/582NnZISoq6l6XZ2BNnVK4V+eK\nTHF1dRU3btwQQghRVFQkXF1dlSzHooqKCuHq6ipycnKULsWsN998U8THxxum3dzcRGlpqYIV1S0t\nLU2EhYUpXYaRY8eOifbt2wuNRiM0Go1o3ry5UKvVIi8vT+nSLDp69Kjo2bOn0mWYtXbtWhEWFtbk\n35NCiCZ5zr2wsFAEBgYapidOnGj0816boqdlnnrqKezcuROA7s/gfv36KVmORbt27YKPjw/c3d2V\nLsWs0NBQ/PjjjxBCICUlBV5eXk3yHOylS5cA6M4Tb9y4Ef/4xz8UrsiYn58f8vLykJmZiczMTHh4\neCA1NRXt27dXurTb/PnnnwB0Y7lp0yZERkYqXJFpP/30Ez788EPs3LmzSb4nTRFN7HMhe3t7ALor\nZrKysvDzzz+jZ8+e5js0/u8b844fPy5GjBghHn/8cTFy5Ehx6tQpJcuxaPTo0eLLL79UugyLKisr\nxbhx44S3t7cYNmyY+O2335QuyaTo6Gjh7+8vunfvLt54440meyWKXseOHZtsjcOHDxd+fn4iODhY\nTJ8+XRQUFChdkkmdO3cWjzzyiAgMDBSBgYFiwoQJSpdk0vbt24WHh4do1aqVcHV1FQMHDlS6JCNJ\nSUnC29tbeHl5ieXLl1tsy68fICKSEP+HKhGRhBjuREQSYrgTEUmI4U5EJCGGOxGRhBjuREQSYrgT\nEUmI4U5EJCGGOzVZu3btwueff650GfU2adIkzJ49W+ky6AHHcKcm68knn8S6desabH0lJSU4cOBA\ng63PnK5duyIkJKRefQ4ePNhk7/ZE9yeGOzVZLVq0gK2tbYOtb/v27QgLC2uw9Znz22+/Wf5CJxNC\nQkLw9ddfN1JF9CBq9O9zJ7pbJSUlWLlyJXx9fXHhwgW8+uqryMvLw5IlSxAWFob9+/fD2dkZ77zz\njtl1CCFQUlJimE5NTcWGDRvg4+MDZ2dnZGdnY8qUKWb7Z2ZmIj4+Hp06dYKvry8WLFiA2NhYxMXF\noby8HFlZWXBxccHo0aNx+fJlODs748SJE9i5cycGDhyIoKAgREdHGwJ87969OHXqFJo3b46oqCi0\nbdsWdnZ2uHr1apO/IxndH3jkTk3e0qVL0adPHwwcOBBt2rTB5s2bcezYMXTq1AnDhw/H8ePHLQY7\noPtq3Jpf11xaWgo3Nze4u7tj2LBh+P777y32z83NhZOTEwoKCqDRaKBWq3Hu3Dl8//33iIqKwq1b\nt+Dt7Y1r164ZwvnatWto1qwZbt68iczMTLRp0wYAcPHiRcyfPx/jxo2Dq6srysrKAACenp5IT0+/\nm6EiMmC4U5N35MgRODk5AQAcHR2RkpICf39/VFVV4bvvvsPHH39saLtp0yZcvHgRAHD48GEkJiZi\nxYoV0Gq1Rqd4evXqhZSUFPTt2xdCCBQXF+PGjRv46quvEBsba/T49ttvERoaih07dhi+e97X1xfb\ntm3DgAEDAADp6ekICgrCoUOH8MQTTwAAwsLCkJqaitDQUBw4cMBwSuh///sfPD098cMPP8DFxcVw\nr1tPT0+TdwgiuhM8LUNNmhAC3bt3x4ULF+Dl5YUzZ84gMDAQp0+fxuDBg43uZ3vhwgVs3LgRTz75\nJABg8+bNWLp0KU6cOIGKigqcP3/eaN1arRZt2rRBYmIihg4dCltbW7z88stma9FqtXBycsLhw4cR\nEhKCQ4cOYcCAASgvL0dRURHS0tJw5MgR9OnTB7/88gueeuopw9H6/v378frrryMlJQUVFRUYOnQo\nBg8ejMrKSuTn58PFxQU5OTmGG14T3S2GOzVZP/74I/744w+8/fbbSElJQWZmJgoLCzFp0iTk5uai\nf//+8PLyglqtxptvvglPT0/06NHD0F9/uqNNmzZo1aoV8vPzDcvOnj2LyspKbNu2DdnZ2ZgxY0ad\n9QwZMgTbt2+Hs7MzHn74YYwaNQoHDx5EUVER3N3dcfnyZfj7+xvuXwsA/v7+hr8s4uLiMHnyZHh7\ne2P58uV46KGHUF5ejoiICENNQ4cObbDxowcbw52arEGDBhluyac//aH3zTff4Ndff0WrVq2Qnp6O\n+fPnY9WqVQCqb4/m4eEBACgsLESHDh1ga2uLiooKtGjRAgcOHMBrr72G4cOHW11P7Q9c/f394e/v\nD0B3mkev5m0Dp06danJdc+bMuW3etWvX4OrqanU9RJbYzJs3b57SRRDVV1lZGdLS0nD+/HlkZGSg\nb9++aNWqFb766itUVFQgODgY9vb2yMvLw8WLF/H3v/8djz32GBITE+Hg4IC3334bjo6OhlM4Stu7\ndy969uwJR0dHpUshSfA2e0REEuLVMkREEmK4ExFJiOFORCQhhjsRkYQY7kREEmK4ExFJiOFORCQh\nhjsRkYQY7kREEvo/yOO43rYugzEAAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x10fb87090>"
}
],
"prompt_number": 28
},
{
"cell_type": "markdown",
"metadata": {},
"source": "So now, lets see what happens if we apply the Benjamini-Hochberg FDR Correction with $\\alpha=0.05$"
},
{
"cell_type": "code",
"collapsed": false,
"input": "rejected, corrected = fdrcorrection0(x, alpha=0.05)",
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": "h2 = plt.hist(corrected)",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEACAYAAAB27puMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG1hJREFUeJzt3H9sVfX9x/HXZRiws0FAqTH2gi13t/dQgYtcLorY6+ZM\nCYMioMhGY6AGRQi6kMVumIjOBJElQ9yssqQuCyhQWKM4lVizthLDvZfp+HF7QesPmAbKj05ogY4K\nn+8fxaPVfqHcD/RSeD6Sk7Tvcz4f3ucTPS/OPffgMcYYAQBgoUe6GwAAdH+ECQDAGmECALBGmAAA\nrBEmAABrhAkAwNoZw2TWrFnKysrSTTfd5NaamppUVFQkr9erSZMmqbm52d23fPly+Xw+OY6jTZs2\nufVkMqkRI0YoJydHCxcudOutra0qKSnRwIEDFYlEtG/fPndfRUWF/H6//H6/1q1b59b37t2rgoIC\nDRw4UA888IBOnjxptwIAAGtnDJOZM2fq7bffblcrKyuT1+vVxx9/rBtuuEEvvviiJGn//v164YUX\n9O6776qsrEzz5893xyxYsECPPfaY4vG4ampqtGXLFklSZWWlDh8+rGQyqcLCQj399NOSpFOnTqm0\ntFTr169XRUWFSktL3bl+//vfa/z48aqrq1NjY6MqKyvPz0oAAFJ2xjAZO3as+vbt264Wi8VUUlKi\nXr16adasWYpGo5KkaDSqwsJCeb1eFRQUyBjj3rXs2rVL06ZNU//+/TV58uR2Y2bMmKGMjAzNnj3b\nrScSCeXn5ys/P19Dhw6V4zhKJBLunz979mz9+Mc/1owZM9wxAID0OednJvF4XHl5eZKkvLw8xWIx\nSW3BEAgE3OP8fr+i0ajq6+s1YMAAt+44jjZv3iypLRgcx5Ek9evXTw0NDWppaVE0GnXr3x1z/Phx\n7d+/X1dffbUkKRAIuHMBANLnnMPkXP71FY/H0+H4b+rGmHbznWluj8cjj8dzTn8+AKBr9DzXAaFQ\nSMlkUsFgUMlkUqFQSJIUDodVVVXlHrdz506FQiFlZmaqoaHBrdfV1SkcDrtj6urq5Pf71djYqKys\nLPXu3VvhcFgbNmxoN6a4uFi9e/fWgAED9N///ld9+/ZtN9f3DR48WJ988sm5nh4AXNZyc3NVX19/\nzuPO+c4kHA6rvLxcx48fV3l5uUaPHi1JGjVqlDZu3Kg9e/aourpaPXr0UGZmpqS2j8NWr16tgwcP\nqrKysl2YrFy5UkePHtWKFSvcuRzH0Y4dO7R9+3Zt27ZNiURCQ4YMccesWLFCR48e1apVq9wx3/fJ\nJ5+4dz6X+/bEE0+kvYeLZWMtWIuLfS3amLRtqf4l/IxhMn36dN1666366KOPlJ2drZdffllz5szR\nnj175Pf79eWXX+qhhx6SJGVlZWnOnDn66U9/qocffljPPfecO88f/vAHPfvsswqFQho7dqxGjhwp\nSbr77rvVp08fBQIBvf3223r88cclST/60Y+0ePFiTZkyRVOnTtUzzzzjzvX444/rzTffVCAQUN++\nfXX33XendOIAgPPnjB9zvfrqqx3WX3vttQ7rjzzyiB555JEf1B3H0QcffPCD+hVXXKHy8vIO57r3\n3nt17733/qB+/fXXq6am5kxtAwC6GG/AXwYikUi6W7hosBbfYi2+xVrY85hvP6S7pPDNLwDdUdu3\nXdN57Urt2smdCQDAGmECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwRJgAAa4QJAMAaYQIAsEaY\nAACsESYAAGuECQDAGmECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwRJgAAa4QJAMAaYQIAsEaY\nAACsESYAAGuECQDAGmECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwRJgAAa4QJAMAaYQIAsJZy\nmPzlL3/RrbfeqptvvlmPPvqoJKmpqUlFRUXyer2aNGmSmpub3eOXL18un88nx3G0adMmt55MJjVi\nxAjl5ORo4cKFbr21tVUlJSUaOHCgIpGI9u3b5+6rqKiQ3++X3+/XunXrUj0FAMD5YlJw6NAhM2jQ\nINPc3GxOnjxpxo0bZ95++22zZMkSM2/ePNPS0mLmzp1rli5daowxpqGhwfj9frN7925TXV1tgsGg\nO9e4cePM6tWrzcGDB82YMWNMPB43xhizZs0aM2XKFHP06FGzePFiM3fuXGOMMSdPnjQ5OTlm+/bt\nZuvWrSY3N7fDHlM8NQBIK0lGMmncUrt2pnRncuWVV8oYo8OHD+v48eM6duyYrr76asViMZWUlKhX\nr16aNWuWotGoJCkajaqwsFBer1cFBQUyxrh3Lbt27dK0adPUv39/TZ48ud2YGTNmKCMjQ7Nnz3br\niURC+fn5ys/P19ChQ+U4jhKJhHWoAgBSl3KYlJWVadCgQbruuus0ZswYhcNhxeNx5eXlSZLy8vIU\ni8UktQVDIBBwx/v9fkWjUdXX12vAgAFu3XEcbd68WZIUi8XkOI4kqV+/fmpoaFBLS4ui0ahb//4Y\nAEB69Exl0IEDBzRnzhzV1dWpb9++uueee/TGG2+o7Q6tczwezw9qxhi3boxpN9+Z5u5oLklatGiR\n+3MkElEkEul0fwBweag+vdlJKUxisZhGjx6twYMHS5LuuecevffeewqFQkomkwoGg0omkwqFQpKk\ncDisqqoqd/zOnTsVCoWUmZmphoYGt15XV6dwOOyOqaurk9/vV2Njo7KystS7d2+Fw2Ft2LCh3Zji\n4uIO+/xumAAAOhI5vX3jyZRmSeljrrFjx2rLli1qbGzU//73P7311lu66667FA6HVV5eruPHj6u8\nvFyjR4+WJI0aNUobN27Unj17VF1drR49eigzM1NS28dhq1ev1sGDB1VZWdkuTFauXKmjR49qxYoV\n7lyO42jHjh3avn27tm3bpkQioSFDhqR08gCA8yTVbxy8/PLL5vbbbzcjR440jz/+uDl58qQ5cuSI\nmThxosnOzjZFRUWmqanJPX7ZsmUmNzfXBAIBU1tb69YTiYQJBoNm0KBBprS01K2fOHHCzJw502Rn\nZ5uCggKzd+9ed9+aNWuMz+czPp/PrF27tsP+LE4NANJG3fTbXJ7TzV9yPB7POT3DAYCLQdsz4HRe\nu1K7dvIGPADAGmECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwRJgAAa4QJAMAaYQIAsEaYAACs\nESYAAGuECQDAGmECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwRJgAAa4QJAMAaYQIAsEaYAACs\nESYAAGuECQDAGmECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwRJgAAa4QJAMAaYQIAsEaYAACs\npRwmR48e1f3336+f/OQnchxH0WhUTU1NKioqktfr1aRJk9Tc3Owev3z5cvl8PjmOo02bNrn1ZDKp\nESNGKCcnRwsXLnTrra2tKikp0cCBAxWJRLRv3z53X0VFhfx+v/x+v9atW5fqKQAAzpOUw+SJJ56Q\n1+vVtm3btG3bNuXl5amsrExer1cff/yxbrjhBr344ouSpP379+uFF17Qu+++q7KyMs2fP9+dZ8GC\nBXrssccUj8dVU1OjLVu2SJIqKyt1+PBhJZNJFRYW6umnn5YknTp1SqWlpVq/fr0qKipUWlpqc/4A\ngPMg5TCpqqrS7373O/Xu3Vs9e/ZUnz59FIvFVFJSol69emnWrFmKRqOSpGg0qsLCQnm9XhUUFMgY\n49617Nq1S9OmTVP//v01efLkdmNmzJihjIwMzZ49260nEgnl5+crPz9fQ4cOleM4SiQStusAALCQ\nUph88cUXamlp0Zw5cxQOh7VkyRIdP35c8XhceXl5kqS8vDzFYjFJbcEQCATc8X6/X9FoVPX19Row\nYIBbdxxHmzdvliTFYjE5jiNJ6tevnxoaGtTS0qJoNOrWvz8GAJAeKYVJS0uLPvroI02ZMkXV1dVK\nJBJau3atjDGdnsPj8fygZoxx68aYdvOdae6O5gIAdJ2eqQwaPHiw/H6/JkyYIEmaPn26/va3vykU\nCimZTCoYDCqZTCoUCkmSwuGwqqqq3PE7d+5UKBRSZmamGhoa3HpdXZ3C4bA7pq6uTn6/X42NjcrK\nylLv3r0VDoe1YcOGdmOKi4s77HPRokXuz5FIRJFIJJXTBYBLWPXpzU5KYSJJPp9P0WhUoVBI//jH\nP3TnnXfq0KFDKi8v17PPPqvy8nKNHj1akjRq1Cj95je/0Z49e/Tpp5+qR48eyszMlNT2cdjq1at1\n5513qrKyUsuWLZPUFiYrV67UXXfdpRUrVrhzOY6jHTt2aPv27TLGKJFIaMiQIR32+N0wAQB0JHJ6\n+8aTqU1jUrRr1y4TDofNsGHDzIIFC0xzc7M5cuSImThxosnOzjZFRUWmqanJPX7ZsmUmNzfXBAIB\nU1tb69YTiYQJBoNm0KBBprS01K2fOHHCzJw502RnZ5uCggKzd+9ed9+aNWuMz+czPp/PrF27tsP+\nLE4NANJGkpFMGrfUrp2e081fcjwezzk9wwGAi0HbM+B0XrtSu3byBjwAwBphAgCwRpgAAKwRJgAA\na4QJAMAaYQIAsEaYAACsESYAAGuECQDAGmECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwRJgAA\na4QJAMAaYQIAsEaYAACsESYAAGuECQDAGmECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwRJgAA\na4QJAMAaYQIAsEaYAACsESYAAGuECQDAGmECALBGmAAArBEmAABrVmFy8uRJBYNBTZgwQZLU1NSk\noqIieb1eTZo0Sc3Nze6xy5cvl8/nk+M42rRpk1tPJpMaMWKEcnJytHDhQrfe2tqqkpISDRw4UJFI\nRPv27XP3VVRUyO/3y+/3a926dTanAAA4D6zC5LnnnpPjOPJ4PJKksrIyeb1effzxx7rhhhv04osv\nSpL279+vF154Qe+++67Kyso0f/58d44FCxboscceUzweV01NjbZs2SJJqqys1OHDh5VMJlVYWKin\nn35aknTq1CmVlpZq/fr1qqioUGlpqc0pAADOg5TD5IsvvtCbb76pBx54QMYYSVIsFlNJSYl69eql\nWbNmKRqNSpKi0agKCwvl9XpVUFAgY4x717Jr1y5NmzZN/fv31+TJk9uNmTFjhjIyMjR79my3nkgk\nlJ+fr/z8fA0dOlSO4yiRSFgtAgDATsph8utf/1pLly5Vjx7fThGPx5WXlydJysvLUywWk9QWDIFA\nwD3O7/crGo2qvr5eAwYMcOuO42jz5s2S2oLJcRxJUr9+/dTQ0KCWlhZFo1G3/v0xAID0SClM3njj\nDQ0YMEDBYNC9K5HU7uez+eajse8yxrh1Y0yn5+5oLgBA1+mZyqD3339fr7/+ut588021tLToyJEj\nKi4uVigUUjKZVDAYVDKZVCgUkiSFw2FVVVW543fu3KlQKKTMzEw1NDS49bq6OoXDYXdMXV2d/H6/\nGhsblZWVpd69eyscDmvDhg3txhQXF3fY56JFi9yfI5GIIpFIKqcLAJew6tObJWOpurra/OIXvzDG\nGLNkyRIzb948c+zYMfPwww+bpUuXGmOM2bdvn/H7/Wb37t3mn//8pwkGg+74cePGmVdffdUcOHDA\njBkzxsTjcWOMMWvWrDGTJ082zc3NZvHixWbu3LnGGGO+/vprk5OTY7Zt22a2bt1qcnJyOuzrPJwa\nAHQ5SUYyadxSu3aelzCZMGGCMcaYI0eOmIkTJ5rs7GxTVFRkmpqa3OOWLVtmcnNzTSAQMLW1tW49\nkUiYYDBoBg0aZEpLS936iRMnzMyZM012drYpKCgwe/fudfetWbPG+Hw+4/P5zNq1azs+McIEQDfU\nXcPEc7r5S47H4zmnZzgAcDFoewaczmtXatdO3oAHAFgjTAAA1ggTAIA1wgQAYI0wAQBYI0wAANYI\nEwCANcIEAGCNMAEAWCNMAADWCBMAgDXCBABgjTABAFgjTAAA1ggTAIA1wgQAYI0wAQBYI0wAANYI\nEwCANcIEAGCNMAEAWCNMAADWCBMAgDXCBABgjTABAFgjTAAA1ggTAIA1wgQAYI0wAQBYI0wAANYI\nEwCANcIEAGCNMAEAWCNMAADWCBMAgDXCBABgLaUw+c9//qM77rhDQ4YMUSQS0SuvvCJJampqUlFR\nkbxeryZNmqTm5mZ3zPLly+Xz+eQ4jjZt2uTWk8mkRowYoZycHC1cuNCtt7a2qqSkRAMHDlQkEtG+\nffvcfRUVFfL7/fL7/Vq3bl0qpwAAOJ9MCvbu3Ws+/PBDY4wxBw4cMDfeeKM5cuSIWbJkiZk3b55p\naWkxc+fONUuXLjXGGNPQ0GD8fr/ZvXu3qa6uNsFg0J1r3LhxZvXq1ebgwYNmzJgxJh6PG2OMWbNm\njZkyZYo5evSoWbx4sZk7d64xxpiTJ0+anJwcs337drN161aTm5vbYY8pnhoApJUkI5k0bqldO1O6\nM7nuuus0fPhwSdI111yjIUOGKB6PKxaLqaSkRL169dKsWbMUjUYlSdFoVIWFhfJ6vSooKJAxxr1r\n2bVrl6ZNm6b+/ftr8uTJ7cbMmDFDGRkZmj17tltPJBLKz89Xfn6+hg4dKsdxlEgk7BIVAGDF+plJ\nfX29EomERo0apXg8rry8PElSXl6eYrGYpLZgCAQC7hi/369oNKr6+noNGDDArTuOo82bN0uSYrGY\nHMeRJPXr108NDQ1qaWlRNBp1698fAwBIj542g5uamjRt2jT98Y9/1FVXXaW2O7TO8Xg8P6gZY9y6\nMabdfGeau6O5JGnRokXuz5FIRJFIpNP9AcDlofr0ZiflMGltbdWUKVNUXFysoqIiSVIoFFIymVQw\nGFQymVQoFJIkhcNhVVVVuWN37typUCikzMxMNTQ0uPW6ujqFw2F3TF1dnfx+vxobG5WVlaXevXsr\nHA5rw4YN7cYUFxd32ON3wwQA0JHI6e0bT6Y0S0ofcxljVFJSovz8fD366KNuPRwOq7y8XMePH1d5\neblGjx4tSRo1apQ2btyoPXv2qLq6Wj169FBmZqakto/DVq9erYMHD6qysrJdmKxcuVJHjx7VihUr\n3Lkcx9GOHTu0fft2bdu2TYlEQkOGDEnp5AEA50kqT+3fe+894/F4zLBhw8zw4cPN8OHDzVtvvWWO\nHDliJk6caLKzs01RUZFpampyxyxbtszk5uaaQCBgamtr3XoikTDBYNAMGjTIlJaWuvUTJ06YmTNn\nmuzsbFNQUGD27t3r7luzZo3x+XzG5/OZtWvXdthjiqcGAGmlbvptLs/p5i85Ho/nnJ7hAMDFoO0Z\ncDqvXaldO3kDHgBgjTABAFgjTAAA1ggTAIA1wgQAYI0wAQBYI0wAANYIEwCANcIEAGCNMAEAWCNM\nAADWCBMAgDXCBABgjTABAFgjTAAA1ggTAIA1wgQAYI0wAQBYI0wAANYIEwCANcIEAGCNMAEAWCNM\nAADWCBMAgDXCBABgjTABAFgjTAAA1ggTAIA1wgQAYI0wAQBYI0wAANYIEwCANcIEAGCNMAEAWCNM\nAADWum2Y1NbWKhAIyOfz6fnnn093OwBwWeu2YfLII4/opZdeUlVVlf785z/r4MGD6W7polVdXZ3u\nFi4arMW3WItvsRb2umWYHD58WJJ0++23a+DAgbrrrrsUjUbT3NXFi/9RvsVafIu1+BZrYa9bhkk8\nHldeXp77u+M42rx5cxo7AoDLW7cMk67y2WefyePxpHXbunVrupcBAM7OdENfffWVGT58uPv7vHnz\nzBtvvNHumNzcXCOJjY2Nje0cttzc3JSuyz3VDfXp00dS2ze6vF6v3nnnHT3xxBPtjqmvr09HawBw\nWeqWYSJJy5Yt04MPPqjW1lbNnz9f11xzTbpbAoDLlscYY9LdBACge+v2D+A78/Lib3/7W+Xk5Ojm\nm2/Wzp07u7jDrnO2tVi1apWGDRumYcOG6Ze//KU++uijNHTZNTr7Ums8HlfPnj3197//vQu76zqd\nWYd4PK5QKKRAIKBIJNK1DXahs63F8ePHdf/99ysYDKqgoECvvfZaGrrsGrNmzVJWVpZuuumm//eY\nc75uWjwHvygMHz7c1NTUmM8//9z4/X5z4MCBdvuj0agZM2aMOXTokHnllVfM+PHj09TphXe2tXj/\n/ffNV199ZYwx5q9//auZMWNGOtrsEmdbC2OM+frrr80dd9xhxo8fb9atW5eGLi+8s63DqVOnTH5+\nvnnnnXeMMabDdbpUnG0tysrKzJw5c4wxxnz++ecmJyfHnDp1Kh2tXnC1tbXmgw8+MPn5+R3uT+W6\n2a3vTDrz8mI0GtXUqVPVr18/TZ8+XclkMh2tXnCdWYtbbrnF/fLC+PHjVVNT0+V9doXOvtT6/PPP\na+rUqbr22mu7usUu0Zl12LJli4YOHao777xTki7ZZ4+dWYs+ffqoqalJra2tamxsVEZGhjweTzra\nveDGjh2rvn37/r/7U7ludusw6czLi7FYTI7juL9fe+21+uSTT7qsx65yri9yrlixQhMmTOiK1rpc\nZ9biyy+/1GuvvaY5c+ZI0iV50ejMOmzcuFEej0djx47VhAkTtHHjxq5us0t0Zi2mT5+ukydP6ppr\nrtFtt92mVatWdXWbF41Urpvd9ttcnWWMkfnedwwuxQvHuaiqqtLKlSv1/vvvp7uVtHn00Uf1zDPP\nyOPxdPjfyOWipaVF//73v1VVVaVjx47p5z//uXbs2KErr7wy3a11uT/96U/q2bOn9u7dq+3bt2v8\n+PHavXu3evTo1n/nTkkq181uvUqhUKjdg6FEIqHRo0e3OyYcDquurs79/cCBA8rJyemyHrtKZ9ZC\nkrZt26aHHnpIr7/+uq6++uqubLHLdGYt/vWvf+m+++7TjTfeqPXr1+vhhx/W66+/3tWtXlCdWYdb\nbrlF48aN03XXXaecnByNHDlStbW1Xd3qBdeZtaitrdWvfvUrZWRkKBwO6/rrr7+kv6RyJqlcN7t1\nmHz35cXPP/9c77zzjsLhcLtjwuGw1q9fr0OHDumVV15RIBBIR6sXXGfWYs+ePZoyZYpWrVqlwYMH\np6PNLtGZtfj000/12Wef6bPPPtPUqVNVVlamiRMnpqPdC6Yz6zB69GjV1NTo2LFjamxs1Icffqgx\nY8ako90LqjNr8bOf/UwbNmzQqVOn9Omnn6qxsbHdR2OXk1Sum93+Y66OXl586aWXJEkPPvigRo0a\npdtuu00jR45Uv379tHLlyjR3fOGcbS2eeuopNTY26qGHHpIkXXHFFYrFYuls+YI521pcLs62Dv37\n99fMmTM1cuRIXXvttXrqqad01VVXpbnrC+Nsa3Hfffeprq7OXYvnnnsuzR1fONOnT1dNTY0OHjyo\n7OxsPfnkk2ptbZWU+nWTlxYBANa69cdcAICLA2ECALBGmAAArBEmAABrhAkAwBphAgCwRpgAAKwR\nJgAAa/8HPb+2b9lWFcsAAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x10e1c5350>"
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": "\"Smallest P value before FDR: {0:0.2e}\\nSmallest P value after FDR: {1:0.2e}\".format(np.min(x), np.min(corrected))",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 10,
"text": "'Smallest P value before FDR: 5.46e-08\\nSmallest P value after FDR: 5.46e-02'"
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": "h2 = plt.boxplot(np.log10(corrected), vert=False)",
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAD7CAYAAAClvBX1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAC+9JREFUeJzt3F2I1PUawPFnyk5aF2FUeuFbhrK+4ZrShqVnC5WoY0Yv\nmBcVaRBCUJEUhmDnIiGEPBalESh0IdHruVAr9GKPnovUTVTQygoLDYJKsrXUDvY7F7Zara6z67iz\nT3w+MDAz+9/f/5mh33fH/2qVUkoJAFK5oN4DANB14g2QkHgDJCTeAAmJN0BC4g2QUJ9aLtbY2Bg7\nd+6s5ZIAf2njx4+PHTt2dPn7avrJe+fOnVFKSXlbvHhx3Wcwf/3nMH++W+bZSynd/sDrsglAQuIN\nkJB4/6a5ubneI5wT89eX+esn8+znolJKqdn/26RSqUQNlwP4y+tuN33yBkhIvAESEm+AhMQbICHx\nBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQb\nICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+A\nhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAES\nEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhI\nvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHx\nBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQbICHxBkhIvAESEm+AhMQb\nICHxBkhIvAESEm+AhMQbICHxBkio6njPnTs3BgwYEOPGjTuf8wBQharj/eCDD8b7779/Pmc5Zy0t\n9Z4AOJ0bb6zNOr/f42fb713pQVfb0dISUamcuF+pRPztb6deY0tLxL/+FfHIIxFXX33iuauv7vge\nVCqn1uiOquM9ZcqU6N+/f/fP1APEG3qn1tbarNOb4v17//vfqdfY0hLx739HrF0b8dVXJ5776qva\nvQftXPMGSKhPrRd85plnTt5vbm6O5ubmWp/iD1paTv0U/Oc/Tz3f3HziBtTHjTee+rR57FhE374n\n7k+aFPHf/1a/zp/3ePv9//zn1DHt+70rPehqO1paIm666Y/P/f6yx7Fjp78M0v7cqa+3/HY7R6UL\n9u3bV8aOHXvGr3dxuZpbvLiupwfO4OKLa7PO7/f42fZ7V3rQ1XYsXlxKe+4iTtzaX+PixaX8/e+l\nDB1aSqVy4rlKpeN70P593e2myyYACVUd7zlz5sTkyZNj7969MXjw4Fi9evX5nKtbXCaB3mnSpNqs\n8/s9frb93pUedLUdfz7+ootOvcbm5og77oj4xz8ihg498dzQobV7D9pVTnx8r9FilUrUcDmAv7zu\ndtNlE4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEG\nSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsg\nIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CE\nxBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARIS\nb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8\nARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEG\nSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8ARISb4CExBsgIfEGSEi8f9PS0lLvEc6J\n+evL/PWTefZzId6/yf4fgPnry/z1k3n2cyHeAAmJN0BClVJKqdVijY2NsXPnzlotB/CXN378+Nix\nY0eXv6+m8QagZ7hsApCQeAMk1O14v/nmmzFmzJi48MILY/v27Z0ee/z48ZgwYULMnDmzu6eruWrm\n379/f9x0000xZsyYaG5ujjVr1vTwlGdW7fu/adOmGDVqVIwYMSJefPHFHpywc21tbTFr1qwYMmRI\n3HHHHXH48OHTHvfqq6/G5MmTY+LEifHYY4/18JRnVu38P/30UzzwwAMxcuTIGD16dHz44Yc9PGlH\n1c4e0Tv3bjXz98a9W81eXLhwYQwfPjwmTpwYn3zySafrdTve48aNi3fffTemTp161mOXL18eo0eP\njkql0t3T1Vw181900UWxbNmy2L17d7z11luxaNGiaGtr68Epz6za9//RRx+NV155JTZu3BgvvfRS\nfPfddz00YedWrFgRQ4YMic8++ywGDRoUK1eu7HDMwYMHY8mSJbFhw4bYtm1b7N27Nz744IM6TNtR\nNfNHRCxevDiGDBkSu3btil27dsWoUaN6eNKOqp09onfu3Wrm741792x7cevWrbF58+ZobW2NBQsW\nxIIFCzpdr9vxbmhoiJEjR571uAMHDsT69evjoYceit70u9Fq5h84cGA0NjZGRMQVV1wRY8aMidbW\n1p4Y76yqmf/QoUMRETF16tQYOnRozJgxI7Zs2dIT453V1q1bY968eXHxxRfH3LlzTztXv379opQS\nhw4diiNHjsTPP/8c/fv3r8O0HVUzf0TExo0b4+mnn46+fftGnz594rLLLuvhSTuqdvbeunermb+3\n7d1q9uKWLVvi7rvvjssvvzzmzJkTH3/8cadrnvdr3o8//ngsXbo0Lrgg9+X1zz//PHbv3h3XXXdd\nvUep2rZt26KhoeHk497yx/aIP87W0NAQW7du7XBMv379YsWKFTFs2LAYOHBg3HDDDb3m/a9m/gMH\nDsTRo0dj/vz50dTUFM8991wcPXq0p0ftoJrZI3rv3q12/na9Ye9Wsxe3bt0ao0ePPvn4yiuvjC++\n+OKMa/bp7ITTp0+Pb775psPzS5Ysqeoa2Nq1a+Oqq66KCRMm1OWfsJ7r/O3a2tpi9uzZsWzZsrj0\n0ktrOWKnajV/vZxp/meffbaqT3LffvttzJ8/P/bs2RP9+/ePe+65J9atWxe33Xbb+Ri3g3Od/+jR\no7F3795YunRpTJs2LR5++OF444034v777z8f4/7Buc7eW/dutfO3q9fe7Y5SSofX1unlqnKOmpub\ny0cffXTary1cuLAMGjSoDBs2rAwcOLBccskl5b777jvXU9ZUZ/OXUsovv/xSpk+fXpYtW9aDU1Wv\ns/l/+OGH0tjYePLxI488UtauXdtTo3XqzjvvLNu3by+llNLa2lruuuuuDsesXbu2zJ49++Tjl19+\nuTz55JM9NmNnqpm/lFIaGhpO3l+/fn259957e2S+zlQze2/eu9W+971p71azF1944YXy/PPPn3w8\nfPjwTtesyZ+Hyhl+Ei5ZsiT2798f+/bti9dffz1uvvnmeO2112pxypo60/yllJg3b16MHTu2V/1N\nhz870/zt11c3bdoUX375ZWzYsCGampp6crQzampqilWrVsWRI0di1apVcf3113c4ZsqUKdHa2hoH\nDx6MY8eOxXvvvRczZsyow7QdVTN/RMSIESNiy5Yt8euvv8a6deti2rRpPTxpR9XM3pv3bjXz97a9\nW81ebGpqirfffju+//77WLNmzdl/ud3dnyTvvPNOGTRoUOnbt28ZMGBAueWWW0oppXz99dfl1ltv\n7XB8S0tLmTlzZndPV3PVzL958+ZSqVTK+PHjS2NjY2lsbCzvvfdePcc+qdr3v6WlpTQ0NJRrrrmm\nLF++vF7jdvDjjz+W22+/vQwePLjMmjWrtLW1lVI6zr969eoyderUMmnSpLJo0aJy/Pjxeo38B9XO\n/+mnn5ampqYyfvz48sQTT5TDhw/Xa+STqp29XW/bu9XM3xv37un24sqVK8vKlStPHvPUU0+VYcOG\nlWuvvbbs2bOn0/X883iAhHrXr5EBqIp4AyQk3gAJiTdAQuINkJB4AyQk3gAJiTdAQv8HOAPzeRoH\n/CUAAAAASUVORK5CYII=\n",
"text": "<matplotlib.figure.Figure at 0x10fad0b90>"
}
],
"prompt_number": 51
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment