Last active
June 20, 2023 13:54
-
-
Save jsks/a1ea25b1b962e7ccbf756a5c655c7299 to your computer and use it in GitHub Desktop.
Expectation maximization in R
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env Rscript | |
# | |
# Gaussian mixture model fit with the expectation-maximization algorithm | |
### | |
library(mclust) | |
library(mvtnorm) | |
set.seed(4323) | |
N <- 1000 | |
D <- 2 | |
K <- 3 | |
### | |
# Sampling functions | |
array2list <- \(a) apply(a, 3, identity, simplify = F) | |
rsimplex <- function(n) { | |
v <- runif(n) | |
v / sum(v) | |
} | |
### | |
# Simulate dataset | |
(mu <- replicate(K, sample(-10:10, 2, replace = T), simplify = F)) | |
(sigma <- rWishart(K, D, diag(1, D)) |> array2list()) | |
(pi <- rsimplex(K)) | |
X <- matrix(0, nrow = N, ncol = D) | |
Z <- sample(1:K, size = N, prob = pi, replace = T) | |
for (n in 1:N) { | |
X[n,] <- rmvnorm(1, mean = mu[[Z[n]]], sigma = sigma[[Z[n]]]) | |
} | |
### | |
# EM functions | |
log_lik <- function(X, mu, sigma, pi) { | |
K <- length(mu) | |
sapply(1:K, \(k) pi[k] * (dmvnorm(X, mu[[k]], sigma[[k]]))) |> | |
rowSums() |> | |
log() |> | |
sum() | |
} | |
E_step <- function(X, mu, sigma, pi) { | |
N <- nrow(X) | |
K <- length(mu) | |
gamma <- matrix(0, nrow = N, ncol = K) | |
for (k in 1:length(pi)) | |
gamma[, k] <- pi[k] * dmvnorm(X, mu[[k]], sigma[[k]]) | |
gamma / (rowSums(gamma) + 1e-10) | |
} | |
M_step <- function(X, gamma) { | |
N <- nrow(X) | |
K <- ncol(gamma) | |
N_k <- colSums(gamma) | |
mu <- vector("list", K) | |
sigma <- vector("list", K) | |
pi <- numeric(K) | |
for (k in 1:K) { | |
mu[[k]] <- colSums(gamma[, k] * X) / N_k[k] | |
X_centered <- sweep(X, 2, mu[[k]]) | |
sigma[[k]] <- crossprod(X_centered, X_centered * gamma[, k]) / N_k[k] | |
pi[k] <- N_k[k] / N | |
} | |
return(list(mu = mu, sigma = sigma, pi = pi)) | |
} | |
EM <- function(X, K, max_iter = 1e4, tol = 1e-6) { | |
N <- nrow(X) | |
D <- ncol(X) | |
mu <- replicate(K, X[sample(nrow(X), 1), ], simplify = F) | |
sigma <- replicate(K, cov(X), simplify = F) | |
pi <- rep(1 / K, K) | |
ll_old <- -Inf | |
for (i in 1:max_iter) { | |
if (i %% 10 == 0) | |
sprintf("Iteration: %d", i) |> print() | |
gamma <- E_step(X, mu, sigma, pi) | |
result <- M_step(X, gamma) | |
mu <- result$mu | |
sigma <- result$sigma | |
pi <- result$pi | |
ll_new <- log_lik(X, mu, sigma, pi) | |
if (abs(ll_new - ll_old) < tol) | |
break | |
if (i == max_iter) | |
stop("Model failed to converge.") | |
ll_old <- ll_new | |
} | |
list(mu = mu, sigma = sigma, pi = pi, gamma = gamma, log_lik = ll_new) | |
} | |
### | |
# Fit with Expectation-Maximization | |
fits <- lapply(1:10, function(i) { | |
print(paste("Model Run:", i)) | |
EM(X, K) | |
}) | |
result <- fits[[which.max(sapply(fits, `[[`, "log_lik"))]] | |
print(result[c("mu", "sigma", "pi")]) | |
z_hat <- apply(result$gamma, 1, which.max) | |
plot(X[, 1], X[, 2], xlim = c(min(X[, 1]) - 1, max(X[, 1]) + 1), | |
ylim = c(min(X[, 2]) - 1, max(X[, 2]) + 1)) | |
points(X[z_hat == 1, 1], X[z_hat == 1, 2], col = "blue") | |
points(X[z_hat == 2, 1], X[z_hat == 2, 2], col = "red") | |
points(X[z_hat == 3, 1], X[z_hat == 3, 2], col = "green") | |
# Fit with mclust package | |
mcl.model <- Mclust(X, 3) | |
print(mcl.model$parameters) | |
plot(mcl.model) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment