Created
January 19, 2024 23:24
-
-
Save jxmorris12/eedb24a06530defb0584c819de628cc6 to your computer and use it in GitHub Desktop.
datasets_fast_load_from_disk.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Iterable | |
import concurrent | |
imoprt datasets | |
import glob | |
import json | |
import multiprocessing | |
import os | |
def load_dataset_tables( | |
files: Iterable[str], num_workers: int | |
) -> Iterable[datasets.table.MemoryMappedTable]: | |
use_threads = False | |
if use_threads: | |
pool_cls = concurrent.futures.ThreadPoolExecutor | |
pool_kwargs = {"max_workers": num_workers} | |
else: | |
pool_cls = multiprocessing.Pool | |
pool_kwargs = {"processes": num_workers} | |
with pool_cls(**pool_kwargs) as pool: | |
result = list( | |
tqdm.tqdm( | |
pool.imap(datasets.table.MemoryMappedTable.from_file, files), | |
desc=f"Loading {len(files)} files with {num_workers} workers", | |
total=len(files), | |
) | |
) | |
return result | |
def datasets_fast_load_from_disk(cache_path: str) -> datasets.Dataset: | |
print(f"fast_load_from_disk called with path:", cache_path) | |
dataset_info_path = os.path.join(cache_path, "dataset_info.json") | |
with open(dataset_info_path, encoding="utf-8") as dataset_info_file: | |
dataset_info = datasets.DatasetInfo.from_dict(json.load(dataset_info_file)) | |
dataset_state_path = os.path.join(cache_path, "state.json") | |
with open(dataset_state_path, encoding="utf-8") as state_file: | |
state = json.load(state_file) | |
files = glob.glob(os.path.join(cache_path, "*.arrow")) | |
files = sorted(files) | |
num_workers = 16 | |
ds_tables = load_dataset_tables( | |
files=files, | |
num_workers=num_workers | |
) | |
arrow_table = datasets.table.concat_tables(ds_tables) | |
split = state["_split"] | |
split = dataset.splits.Split(split) if split is not None else split | |
return datasets.Dataset( | |
arrow_table=arrow_table, | |
info=dataset_info, | |
split=split, | |
fingerprint=state["_fingerprint"], | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment