This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE TemplateHaskell #-} | |
import Control.Lens | |
import Control.Lens.TH | |
-------------------------------------------------------------------------------- | |
-- Characters | |
-- | |
-- Some of the fields are only relevant to some characters, but are |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// | |
// Author: Jonathan Blow | |
// Version: 1 | |
// Date: 31 August, 2018 | |
// | |
// This code is released under the MIT license, which you can find at | |
// | |
// https://opensource.org/licenses/MIT | |
// | |
// |
L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns
Compress 1K bytes with Zippy ............. 3,000 ns = 3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns = 20 µs
SSD random read ........................ 150,000 ns = 150 µs
Read 1 MB sequentially from memory ..... 250,000 ns = 250 µs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Latency Comparison Numbers (~2012) | |
---------------------------------- | |
L1 cache reference 0.5 ns | |
Branch mispredict 5 ns | |
L2 cache reference 7 ns 14x L1 cache | |
Mutex lock/unlock 25 ns | |
Main memory reference 100 ns 20x L2 cache, 200x L1 cache | |
Compress 1K bytes with Zippy 3,000 ns 3 us | |
Send 1K bytes over 1 Gbps network 10,000 ns 10 us | |
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD |
HTTP is a stateless protocol. Sessions allow us to chain multiple requests together into a conversation between client and server.
Sessions should be an option of last resort. If there's no where else that the data can possibly go to achieve the desired functionality, only then should it be stored in the session. Sessions can be vulnerable to security threats from third parties, malicious users, and can cause scaling problems.
That doesn't mean we can't use sessions, but we should only use them where necessary.