Last active
October 17, 2024 08:31
-
-
Save keltecc/b5fbd533d2f203e810b43c26ff9d17cc to your computer and use it in GitHub Desktop.
An example of Miller-Rabin primality test breaking
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env sage | |
# François Arnault. 1995. Constructing Carmichael Numbers which are Strong Pseudoprimes to Several Bases | |
# https://doi.org/10.1006/jsco.1995.1042 | |
from sys import stderr | |
from random import choice, getrandbits | |
def miller_rabin(bases, n): | |
if n == 2 or n == 3: | |
return True | |
if n % 2 == 0: | |
return False | |
r, s = 0, n - 1 | |
while s % 2 == 0: | |
r += 1 | |
s //= 2 | |
ZmodN = Zmod(n) | |
for b in map(ZmodN, bases): | |
x = b ^ s | |
if x == 1 or x == -1: | |
continue | |
for _ in range(r - 1): | |
x = x ^ 2 | |
if x == -1: | |
break | |
else: | |
return False | |
return True | |
def search_pseudoprime(bases, coeffs, rlen, iters, verbose=False): | |
modules = [4 * b for b in bases] | |
residues = dict() | |
for b, m in zip(bases, modules): | |
residues[b] = set() | |
for p in primes(3, 1024 * max(bases)): | |
if kronecker(b, p) == -1: | |
residues[b].add(p % m) | |
sets = dict() | |
for b, m in zip(bases, modules): | |
s = [] | |
for c in coeffs: | |
s.append({(inverse_mod(c, m) * (r + c - 1)) % m for r in residues[b]}) | |
sets[b] = list(set.intersection(*s)) | |
# only support this | |
assert len(coeffs) == 3 | |
coeffs_inv = [ | |
1, | |
coeffs[1] - inverse_mod(coeffs[2], coeffs[1]), | |
coeffs[2] - inverse_mod(coeffs[1], coeffs[2]) | |
] | |
mod = lcm(modules + coeffs) | |
while True: | |
choices = [choice(sets[b]) for b in bases] | |
rem = crt( | |
choices + coeffs_inv, | |
bases + coeffs | |
) | |
if verbose: | |
print(f'[*] Searching pseudoprime...', file=stderr) | |
for i in range(iters): | |
if verbose and i % 10000 == 0: | |
print(f'{i}...') | |
p1 = getrandbits(rlen) * mod + rem | |
p2 = (p1 - 1) * coeffs[1] + 1 | |
p3 = (p1 - 1) * coeffs[2] + 1 | |
pprime = p1 * p2 * p3 | |
if miller_rabin(bases, pprime): | |
break | |
else: | |
if verbose: | |
print(f'[-] Failed to find pseudoprime, trying with another choices...', file=stderr) | |
continue | |
if verbose: | |
print(f'[+] Found pseudoprime!', file=stderr) | |
print(f'[+] P = {pprime}', file=stderr) | |
return pprime, [p1, p2, p3] | |
if __name__ == '__main__': | |
rlen = 256 | |
iters = 30000 | |
verbose = True | |
bases = list(primes(300)) | |
coeffs = [1, 313, 353] | |
pprime, divisors = search_pseudoprime(bases, coeffs, rlen, iters, verbose) | |
assert not is_prime(pprime) and \ | |
miller_rabin(bases, pprime) | |
''' | |
$ sage arnault.sage | |
[*] Searching pseudoprime... | |
0... | |
10000... | |
20000... | |
[-] Failed to find pseudoprime, trying with another choices... | |
[*] Searching pseudoprime... | |
0... | |
10000... | |
[+] Found pseudoprime! | |
[+] P = 99597527340020670697596886062721977401836948352586238797499761849061796816245727295797460642211895009946326533856101876592304488359235447755504083536903673408562244316363452203072868521183142694959128745107323188995740668134018742165409361423628304730379121574707411453909999845745038957688998441109092021094925758212635651445626620045726265831347783805945477368631216031783484978212374792517000073275125176790602508815912876763504846656547041590967709195413101791490627310943998497788944526663960420235802025853374061708569334400472016398343229556656720912631463470998180176325607452843441554359644313713952036867 | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment