Created
February 10, 2012 02:02
-
-
Save kiyotakagoto/1785470 to your computer and use it in GitHub Desktop.
L*a*b*色空間上で色差を求める CIE DE 2000( perl )
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# 参考:http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE2000.html | |
=comment | |
$labx = { | |
L => value, | |
a => value, | |
b => value, | |
}; | |
=cut | |
sub cie_de_2000 { | |
my ($lab1, $lab2) = @_; | |
my ($L1, $a1, $b1, $L2, $a2, $b2) = ( | |
$lab1->{L}, $lab1->{a}, $lab1->{b}, | |
$lab2->{L}, $lab2->{a}, $lab2->{b}, | |
); | |
my $Ldash_ = ( $L1 + $L2 ) / 2; | |
my $C1 = sqrt( $a1 ** 2 + $b1 ** 2 ); | |
my $C2 = sqrt( $a2 ** 2 + $b2 ** 2 ); | |
my $C_ = ( $C1 + $C2 ) / 2; | |
my $G = ( 1 - sqrt( $C_ ** 7 / ($C_ ** 7 + 25 ** 7 ) ) ) / 2; | |
my $a1dash = $a1 * ( 1 + $G ); | |
my $a2dash = $a2 * ( 1 + $G ); | |
my $C1dash = sqrt( $a1dash ** 2 + $b1 ** 2); | |
my $C2dash = sqrt( $a2dash ** 2 + $b2 ** 2); | |
my $Cdash_ = ( $C1dash + $C2dash ) / 2; | |
my $h1dash = rad2deg( atan2( $b1, $a1dash ) ); | |
if ( 0 > $h1dash ) { | |
$h1dash += 360; | |
} | |
my $h2dash = rad2deg( atan2( $b2 ,$a2dash ) ); | |
if ( 0 > $h2dash ) { | |
$h2dash += 360; | |
} | |
my $Hdash_; | |
if ( abs( $h1dash - $h2dash ) > 180 ) { | |
$Hdash_ = ( $h1dash + $h2dash + 360) / 2; | |
} | |
else { | |
$Hdash_ = ( $h1dash + $h2dash ) / 2; | |
} | |
my $T = 1 | |
- 0.17 * cos( $Hdash_ - 30 ) | |
+ 0.24 * cos( 2 * $Hdash_) | |
+ 0.32 * cos( 3 * $Hdash_ + 6 ) | |
- 0.20 * cos( 4 * $Hdash_ - 63 ) | |
; | |
my $dhdash; | |
if ( abs( $h2dash - $h1dash) <= 180 ) { | |
$dhdash = $h2dash - $h1dash; | |
} | |
elsif ( ( abs( $h2dash - $h1dash) > 180 ) && ( $h2dash <= $h1dash ) ) { | |
$dhdash = $h2dash - $h1dash + 360; | |
} | |
else { | |
$dhdash = $h2dash - $h1dash - 360; | |
} | |
my $dLdash = $L2 - $L1; | |
my $dCdash = $C2dash - $C1dash; | |
my $dHdash = 2 * sqrt($C1dash * $C2dash) * sin( deg2rad( $dhdash / 2 ) ); | |
my $S_L = 1 + ( ( 0.015 * ($Ldash_ - 50) ** 2) / sqrt(20 + ($Ldash_ - 50) ** 2) ); | |
my $S_C = 1 + 0.045 * $Cdash_; | |
my $S_H = 1 + 0.015 * $Cdash_ * $T; | |
my $dtheta = 30 * exp( -( ($Hdash_ - 275) / 25) ** 2); | |
my $R_C = 2 * sqrt( $Cdash_ ** 7 / ($Cdash_ ** 7 + 25 ** 7)); | |
my $R_T = -$R_C * sin( deg2rad( 2 * $dtheta ) ); | |
my $K_L = 1; | |
my $K_C = 1; | |
my $K_H = 1; | |
my $dE = sqrt( | |
($dLdash / ($K_L * $S_L) ) ** 2 | |
+ ($dCdash / ($K_C * $S_C) ) ** 2 | |
+ ($dHdash / ($K_H * $S_H) ) ** 2 | |
+ $R_T * ($dCdash / ($K_C * $S_C) ) * ($dHdash / ($K_H * $S_H) ) | |
); | |
return $dE; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment