Created
June 5, 2020 06:49
-
-
Save korkridake/bb45698edea69906ee22bd985090bb0f to your computer and use it in GitHub Desktop.
MLOps Ep.4 Productionizing Training Script (Load and preprocess data)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Load data in Pandas | |
df = dataset.to_pandas_dataframe() | |
print(df.shape) | |
df.head() | |
# Preprocess data | |
df = df.drop_duplicates() | |
df = df.drop(["dateCrawled","dateCreated","lastSeen", "seller", "name", "postalCode"] , axis = 1) | |
df["notRepairedDamage"] = df["notRepairedDamage"].fillna("nein") | |
df["fuelType"] = df["fuelType"].fillna("benzin") | |
df["model"] = df["model"].fillna("golf") | |
vehicleType = df["vehicleType"].unique() | |
fuelType = df["fuelType"].unique() | |
vehicleType = vehicleType[vehicleType != np.array(None)] | |
fuelType = fuelType[fuelType != np.array(None)] | |
d = {} | |
for i in fuelType : | |
m = 0 | |
for j in vehicleType : | |
if df[(df.vehicleType == j) & (df.fuelType == i)].shape[0] > m : | |
m = df[(df.vehicleType == j) & (df.fuelType == i)].shape[0] | |
d[i] = j | |
for i in fuelType : | |
df.loc[(df.fuelType == i) & (df.vehicleType.isnull()) ,"vehicleType" ] = d[i] | |
gearbox = df["gearbox"].unique() | |
brand = df["brand"].unique() | |
gearbox = gearbox[gearbox != np.array(None)] | |
brand = brand[brand != np.array(None)] | |
d = {} | |
for i in brand : | |
m = 0 | |
for j in gearbox : | |
if df[(df.gearbox == j) & (df.brand == i)].shape[0] > m: | |
m = df[(df.gearbox == j) & (df.brand == i)].shape[0] | |
d[i] = j | |
for i in brand : | |
df.loc[(df.brand == i) & (df.gearbox.isnull()) ,"gearbox"] = d[i] | |
df = df.dropna() | |
df["offerType"] = LabelEncoder().fit_transform(df["offerType"]) | |
df["vehicleType"] = LabelEncoder().fit_transform(df["vehicleType"]) | |
df["fuelType"] = LabelEncoder().fit_transform(df["fuelType"]) | |
df["gearbox"] = LabelEncoder().fit_transform(df["gearbox"]) | |
df["notRepairedDamage"] = LabelEncoder().fit_transform(df["notRepairedDamage"]) | |
df["brand"] = LabelEncoder().fit_transform(df["brand"]) | |
df["model"] = LabelEncoder().fit_transform(df["model"]) | |
df["abtest"] = LabelEncoder().fit_transform(df["abtest"]) | |
df = df[(df.yearOfRegistration < 2017) & (df.yearOfRegistration > 1950)] | |
df = df[(df.price > 100) & (df.price < 200000) ] | |
y = df["price"] | |
X = df.drop("price",axis=1) | |
# Split Data into Training and Validation Sets | |
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 1234) | |
data = {"train": {"X": X_train, "y": y_train}, | |
"test": {"X": X_test, "y": y_test}} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment