Last active
May 15, 2022 13:12
-
-
Save koshian2/c57c9bad91f1f4da89622a98af0aafa1 to your computer and use it in GitHub Desktop.
PyTorch lightning CSVLogger
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.data import DataLoader | |
import torchvision | |
import torchmetrics | |
import pytorch_lightning as pl | |
class TenLayersModel(pl.LightningModule): | |
def __init__(self): | |
super().__init__() | |
self.layers = nn.ModuleList() | |
for i in range(3): | |
for j in range(3): | |
if i == 0 and j == 0: | |
in_ch = 3 | |
elif j == 0: | |
in_ch = 64 * (2**(i-1)) | |
else: | |
in_ch = 64*(2**i) | |
out_ch = 64*(2**i) | |
self.layers.append(nn.Conv2d(in_ch, out_ch, 3, padding=1)) | |
self.layers.append(nn.BatchNorm2d(out_ch)) | |
self.layers.append(nn.ReLU()) | |
self.layers.append(nn.AdaptiveAvgPool2d((1, 1))) | |
self.fc = nn.Linear(256, 10) | |
self.train_acc = torchmetrics.Accuracy() | |
self.val_acc = torchmetrics.Accuracy() | |
def forward(self, inputs): | |
x = inputs | |
for l in self.layers: | |
x = l(x) | |
x = x.view(x.shape[0], 256) | |
x = self.fc(x) | |
return x | |
def configure_optimizers(self): | |
optimizer = torch.optim.SGD(self.parameters(), 0.1, 0.9) | |
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [70, 90], gamma=0.1) | |
return [optimizer], [scheduler] | |
def training_step(self, train_batch, batch_idx): | |
x, y_true = train_batch | |
y_pred = self.forward(x) | |
loss = F.cross_entropy(y_pred, y_true) | |
y_pred_label = torch.argmax(y_pred, dim=-1) | |
self.train_acc.update(y_pred_label, y_true) | |
self.log("train_loss", loss, prog_bar=True, logger=True) | |
return loss | |
def training_epoch_end(self, outputs): | |
self.log("train_acc", self.train_acc.compute(), prog_bar=True, logger=True) | |
self.train_acc.reset() | |
def validation_step(self, val_batch, batch_idx): | |
x, y_true = val_batch | |
y_pred = self.forward(x) | |
loss = F.cross_entropy(y_pred, y_true) | |
y_pred_label = torch.argmax(y_pred, dim=-1) | |
self.val_acc.update(y_pred_label, y_true) | |
self.log("val_loss", loss, prog_bar=False, logger=True) | |
return loss | |
def validation_epoch_end(self, outputs): | |
self.log("val_acc", self.val_acc.compute(), prog_bar=True, logger=True) | |
self.val_acc.reset() | |
class MyDataModule(pl.LightningDataModule): | |
def __init__(self): | |
super().__init__() | |
def prepare_data(self): | |
self.train_dataset = torchvision.datasets.CIFAR10( | |
"./data", train=True, download=True, | |
transform=torchvision.transforms.Compose([ | |
torchvision.transforms.RandomHorizontalFlip(), | |
torchvision.transforms.RandomCrop(size=(32, 32), padding=2), | |
torchvision.transforms.ToTensor() | |
])) | |
self.val_dataset = torchvision.datasets.CIFAR10( | |
"./data", train=False, download=True, | |
transform=torchvision.transforms.ToTensor()) | |
def train_dataloader(self): | |
return DataLoader(self.train_dataset, batch_size=256, num_workers=4, shuffle=True) | |
def val_dataloader(self): | |
return DataLoader(self.val_dataset, batch_size=256, num_workers=4, shuffle=False) | |
def main(): | |
model = TenLayersModel() | |
cifar = MyDataModule() | |
logger_csv = pl.loggers.CSVLogger("outputs", name="lightning_logs_csv") | |
logger_tb = pl.loggers.TensorBoardLogger("outputs", name="lightning_logs_tb") | |
checkpoint_cb = pl.callbacks.ModelCheckpoint(dirpath="outputs/checkpoints", save_top_k=1, monitor="val_acc", | |
mode="max", filename="{epoch:03}-{val_acc:.3f}") | |
trainer = pl.Trainer(gpus=[1], max_epochs=100, logger=[logger_csv, logger_tb], callbacks=[checkpoint_cb]) | |
trainer.fit(model, cifar) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment